Search results

1 – 10 of 930
Article
Publication date: 20 March 2017

Zhijia Xu, Qinghui Wang and Jingrong Li

The purpose of this paper is to develop a general mathematic approach to model the microstructures of porous structures produced by additive manufacturing (AM), which will result…

Abstract

Purpose

The purpose of this paper is to develop a general mathematic approach to model the microstructures of porous structures produced by additive manufacturing (AM), which will result in fractal surface topography and higher roughness that have greater influence on the performance of porous structures.

Design/methodology/approach

The overall shapes of pores were modeled by triply periodic minimal surface (TPMS), and the micro-roughness details attached to the overall pore shapes were represented by Weierstrass–Mandelbrot (W-M) fractal representation, which was integrated with TPMS along its normal vectors. An index roughly reflecting the irregularity of fractal TPMS was proposed, based on which the influence of the fractal parameters on the fractal TPMS was qualitatively analyzed. Two complex samples of real porous structures were given to demonstrate the feasibility of the model.

Findings

The fractal surface topography should not be neglected at a micro-scale level. In addition, a decrease in the fractal dimension Ds may exponentially make the topography rougher; an increase in the height-scaling parameter G may linearly increase the roughness; and the number of the superposed ridges has no distinct influence on the topography. Furthermore, the synthesis method is general for all implicit surfaces.

Practical implications

The method provides an alternative way to shift the posteriori design paradigm of porous media to priori design mode through numeric simulation. Therefore, the optimization of AM process parameters, as well as the porous structure, can be potentially realized according to specific functional requirement.

Originality/value

The synthesis of TPMS and W-M fractal geometry was accomplished efficiently and was general for all implicit freeform surfaces, and the influence of the fractal parameters on the fractal TPMS was analyzed more systematically.

Details

Rapid Prototyping Journal, vol. 23 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 14 September 2015

Linlin Li, Jiajun Yang and Wenwei Liu

The purpose of this paper is to explore the effect of surface roughness characterized by fractal geometry on squeeze film damping characteristics in damper of the linear rolling…

Abstract

Purpose

The purpose of this paper is to explore the effect of surface roughness characterized by fractal geometry on squeeze film damping characteristics in damper of the linear rolling guide, which has not been studied so far.

Design/methodology/approach

The stochastic model of film thickness between rail and damper is established by using the two-variable Weierstrass–Mandelbrot function defining multi-scale and self-affinity properties of the rough surface topography. The stochastically averaged Reynolds equation is solved by using the variables separation method to further derive the film pressure distribution, the damping coefficient, the damping force and squeeze film time. The effect of surface roughness on squeeze film damping characteristics of the damper is analyzed and discussed through simulation.

Findings

By comparing cases of the rough surface for different fractal parameters and the smooth surface, it is shown that for the isotropic roughness structure, the presence of surface roughness of the damper decreases the squeeze film damping characteristics. It is found that roughness effect on the damping coefficient is associated with the film thickness. In addition, the vibration amplitude effect is negligible for the damper of the linear rolling guide.

Originality/value

To investigate the random surface roughness effect, the rough surface topography of damper of the linear rolling guide is characterized by using the fractal method instead of the traditional mathematical statistics method.

Details

Industrial Lubrication and Tribology, vol. 67 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 January 2024

Shi Chen, Zhiyong Han, Qiang Zeng, Bing Wang, Liming Wang, Liuyang Guo and Yimin Shao

Hydro-viscous drive (HVD) clutches are widely used in equipment requiring soft start, such as fans and pumps, to transmit torque and adjust speed by changing the gap distance…

103

Abstract

Purpose

Hydro-viscous drive (HVD) clutches are widely used in equipment requiring soft start, such as fans and pumps, to transmit torque and adjust speed by changing the gap distance between friction pairs. This paper aims to propose a novel two-parameter evaluation method for HVD during the mixed lubrication stage. The objective is to develop an effective model that establishes the relationship between these parameters and the actual surface topography.

Design/methodology/approach

In the presented methods, the fractal features of the real manufacturing surface are calculated based on the power spectrum function by the ultra-depth three-dimensional microscope. After that, the hybrid friction model of the friction plate is established based on mixed elasto-hydrodynamic lubrication theory, boundary friction model and fractal theory. Then the torque and load bearing characteristics of the clutch are obtained, and the influences of the surface fractal features are investigated and discussed. Finally, the Weierstrass–Mandelbrot function is adopted for the surface topography characterization and evaluation.

Findings

The results indicate that the proposed method exhibits good accuracy, while the speed difference between the friction pair exceeds 2,500 rpm. It is concluded that this paper proposed a way to evaluate the torque and loading capacity of HVD considering the real manufacturing surface topography and is helpful for surface optimization.

Originality/value

The originality and value of this study lie in its development of a novel torque and load bearing capacity evaluation method for HVD in mixed lubrication stage, considering manufacturing surface topography and describing the real manufacturing surface.

Details

Industrial Lubrication and Tribology, vol. 76 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 2 November 2015

Zheng Bo, Qi Zhao, Xiaorui Shuai, Jianhua Yan and Kefa Cen

– The purpose of this paper is to provide a quantitative assessment on the effect of wall roughness on the pressure drop of fluid flow in microchannels.

Abstract

Purpose

The purpose of this paper is to provide a quantitative assessment on the effect of wall roughness on the pressure drop of fluid flow in microchannels.

Design/methodology/approach

The wall roughness is generated by the method of random midpoint displacement (RMD) and the lattice Boltzmann BGK model is applied. The influences of Reynolds number, relative roughness and the Hurst exponent of roughness profile on the Poiseuille number are investigated.

Findings

Unlike the smooth channel flow, Reynolds number, relative roughness and the Hurst exponent of roughness profiles play critical roles on the Poiseuille number Po in rough microchannels. Modeling results indicate that, in rough microchannels, the rough surface configuration intensifies the flow-surface interactions and the wall conditions turn to dominate the flow characteristics. The perturbance of the local flows near the channel wall and the formation of recirculation regions are two main features of the flow-surface interactions.

Research limitations/implications

The fluid flow in parallel planes with surface roughness is considered in the current study. In other words, only two-dimensional fluid flow is investigated.

Practical implications

The LBM is a very useful tool to investigate the microscale flows.

Originality/value

A new method (RMD) is applied to generate the wall roughness in parallel plane and LBM is conducted to investigate the pressure drop characteristics in rough microchannels.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 25 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 3 July 2018

Fanming Meng, Jing He and Xiansheng Gong

The purpose of this study is to research the influence of wire’s surface topography on interwire contact performance of simple spiral strand.

126

Abstract

Purpose

The purpose of this study is to research the influence of wire’s surface topography on interwire contact performance of simple spiral strand.

Design/methodology/approach

The mechanical model of the simple spiral strand imposed by a tensile load is first established, into which the surface topography, Poisson’s ratio effect and radial deformation are incorporated simultaneously. Meanwhile, the Gaussian and non-Gaussian rough surfaces of the steel wires are obtained with the fast Fourier transform (FFT) and digital filter technology. Then, the rough interwire contact performance of the simple spiral strand is calculated by using conjugate gradient method and FFT.

Findings

As compared with smooth wire surface, both the longitudinal orientation for the Gaussian wire surface and large kurtosis or small skewness for the non-Gaussian surface yield a small contact pressure and stress.

Originality/value

This study conducts detailed discussion of the influence of wire’s surface topography on the interwire contact performance for the simple spiral strand and gives a beneficial reference for the design and application of a wire rope.

Details

Industrial Lubrication and Tribology, vol. 70 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 3 October 2016

Lurwan Mahmoud Sabo, Norman Mariun, Hashim Hizam, Mohd Amran Mohd Radzi and Azmi Zakaria

The purpose of this study is to evaluate the reliability of the technique for estimating solar radiation in areas of rough topography and to detect the source of error and means…

Abstract

Purpose

The purpose of this study is to evaluate the reliability of the technique for estimating solar radiation in areas of rough topography and to detect the source of error and means for improvement.

Design/methodology/approach

Spatial data of the study area in the form of digital elevation model (DEM) coupled with geographic information system (GIS) were used to estimate the monthly solar radiation at locations with rough topography. The generated data were compared with measured data collected from all the selected locations using NASA data.

Findings

The results show that the variation in topographic parameters has a strong influence on the amount of solar radiation received by two close locations. However, the method performed well for solar radiation estimated in the areas of rough topography.

Research limitations/implications

The proposed approach overestimates the monthly solar radiation as compared with NASA data due to the impact of topographic parameters accounted for by the model which are not accounted by conventional methods of measurements. This approach can be improved by incorporating the reflected component of radiation in the model used to estimate the solar radiation implemented in the GIS.

Originality/value

The approach of using GIS with DEM to estimate solar radiation enables to identify the spatial variability in solar radiation between two closest locations due to the influence of topographic parameters, and this will assist in proper energy planning and decision making for optimal areas of solar photovoltaic installation.

Details

World Journal of Engineering, vol. 13 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 4 July 2018

Yunlong Jiao, Xiaojun Liu and Kun Liu

Dynamic spreading and wetting on the rough surfaces is complicated, which directly affects the fluxion and phrase transition properties of the fluid. This paper aims to enhance…

Abstract

Purpose

Dynamic spreading and wetting on the rough surfaces is complicated, which directly affects the fluxion and phrase transition properties of the fluid. This paper aims to enhance our knowledge of the mechanism of micro-texture lubrication from interface wettability and provide some guidance for the practical manufacturing of the surfaces with special wettability and better lubrication characteristics.

Design/methodology/approach

The effect of surface topography on the wetting behavior of both smooth and rough hydrophilic surfaces was investigated using a combination of experimental and simulation approaches. Four types of patterns with different topographies were designed and fabricated through laser surface texturing. The samples were measured with a non-contact three-Dimensional (3D) optical profiler and were parameterized based on ISO 25178. Quantitative research on the relevancy between the topography characteristic and wettability was conducted with several 3D topography parameters.

Findings

Results show that for the surfaces with isotropic textures, topography with a small skewness (Ssk) and a large kurtosis (Sku) exhibits better wettability and spreading behavior. For the surfaces with anisotropic textures (smaller texture aspect ratio, Str), dominant textures (such as long groove, rectangle) play a significant guiding role in promoting spreading. In addition, the moving mechanism of the triple contact line and anisotropic spreading were also studied using a computational fluid dynamics simulation. The simulation results have a good adherence with the experimental results.

Originality/value

Most of the surface characterization methods at present remain at a level that is related to geometric description, and the topography parameters are limited to 2D roughness parameters. So in present study, the relevancy between wettability and 3D surface topography parameters is explored. The authors believe that the current work provides a new viewpoint to the relevancy between surface topography and wettability.

Details

Industrial Lubrication and Tribology, vol. 70 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 26 August 2014

Ankita Pritam Praharaj, Dibakar Behera, Tapan Kumar Bastia, Prasanta Rath and Priyabrata Mohanty

– This paper aims to prepare BisGMA (bisphenol-A glycidyldimethacrylate)/jute fibre/fly ash hybrid composites with improved mechanical and corrosive properties.

Abstract

Purpose

This paper aims to prepare BisGMA (bisphenol-A glycidyldimethacrylate)/jute fibre/fly ash hybrid composites with improved mechanical and corrosive properties.

Design/methodology/approach

BisGMA prepolymer was first synthesised using diglycidyl ether of bisphenol-A and methacrylic acid. Then 2-hydroxy ethylacrylate-treated jute fibre and sodium hydroxide-treated fly ash were incorporated in the fabrication of composites using dicumyl peroxide, cobalt naphthenate and N,N-dimethyl aniline as catalyst, accelerator and promoter, respectively. The composition of BisGMA, jute fibre and fly ash was kept constant, whereas treated and untreated jute fibre and fly ash were used alternatively.

Findings

Treatment of both jute and fly ash leads to improved mechanical properties of composites. However, treated fabric plays a dominant role compared to treated fly ash as filler. Among all the composites, the one having both treated jute fibre and treated fly ash is the most suitable composite for structural applications.

Research limitations/implications

The present investigation has come up with a hybrid composite that can be used for a wide range of applications like low-cost housing and structural projects, structural laminates, etc., as it is both corrosion- and moisture-resistant. It is also the most durable from the mechanical point of view. There is also a scope of using other fillers instead of fly ash to study the changes brought about in the mechanical properties.

Originality/value

The above composites have never been fabricated before.

Details

Pigment & Resin Technology, vol. 43 no. 5
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 15 September 2023

Deepak Kumar Prajapati, Jitendra Kumar Katiyar and Chander Prakash

This study aims to use a machine learning (ML) model for the prediction of traction coefficient and asperity load ratio for different surface topographies of non-conformal rough

Abstract

Purpose

This study aims to use a machine learning (ML) model for the prediction of traction coefficient and asperity load ratio for different surface topographies of non-conformal rough contacts.

Design/methodology/approach

The input data set for the ML model is generated using a mixed-lubrication model. Surface topography parameters (skewness, kurtosis and pattern ratio), rolling speed and hardness are used as input features in the multi-layer perceptron (MLP) model. The hyperparameter tuning and fivefold cross-validation are also performed to minimize the overfitting.

Findings

From the results, it is shown that the MLP model shows excellent accuracy (R2 > 90%) on the test data set for making the prediction of mixed lubrication parameters. It is also observed that engineered rough surfaces with high negative skewness, low kurtosis and isotropic surface patterns exhibit a significant low traction coefficient. It is also concluded that the MLP model gives better accuracy in comparison to the random forest regression model based on the training and testing data sets.

Originality/value

Mixed lubrication parameters are predicted by developing a regression-based MLP model. The machine learning model is trained using several topography parameters, which are vital in the mixed-EHL regime because of the lack of regression-fit expressions in previous works. The accuracy of MLP with random forest models is also compared.

Details

Industrial Lubrication and Tribology, vol. 75 no. 9
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 8 May 2018

Linlin Li and Jiajun Yang

The purpose of this paper is to study the effects of surface roughness on the lubrication performances of the linear rolling guide, which provides theoretical guidance for its…

Abstract

Purpose

The purpose of this paper is to study the effects of surface roughness on the lubrication performances of the linear rolling guide, which provides theoretical guidance for its lubrication design.

Design/methodology/approach

The two-variable Weierstrass–Mandelbrot function is used to represent the random and multi-scale characteristics of the rough surface topography. The elastohydrodynamic lubrication (EHL) model of contact between the steel ball and raceway is built. The full numerical solutions of the pressure and film thickness are obtained by using the multi-grid technique.

Findings

The presence of surface roughness can cause the random fluctuations of the pressure and film thickness, and the fluctuations can become more dramatic for the rougher surfaces. It is also found that the film characteristics can be influenced significantly by the working conditions, such as the load, velocity and ambient viscosity of lubricants.

Originality/value

Characterization of surface topographies regarding EHL problems in the past studies cannot reflect random and multi-scale characteristics. In this paper, the fractal-based method is introduced to analysis of the point-contact micro-EHL. It reveals the mechanism and law of contact lubrication influenced by the fractal surface roughness and enriches the lubrication principle and method of the linear rolling guide.

Details

Industrial Lubrication and Tribology, vol. 70 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of 930