Search results

1 – 10 of over 61000
Article
Publication date: 13 November 2007

Seta Bogosyan, Murat Barut and Metin Gokasan

The purpose of this paper is to improve performance in the estimation of velocity and flux in the sensorless control of induction motors (IMs) over a wide speed range, including…

Abstract

Purpose

The purpose of this paper is to improve performance in the estimation of velocity and flux in the sensorless control of induction motors (IMs) over a wide speed range, including low and zero speed.

Design/methodology/approach

Temperature and frequency dependent variations of stator (Rs) and rotor (Rr) resistances are very effective on estimation performance in sensorless control over a wide speed range. To this aim, an extended Kalman filter (EKF) is designed, which estimates the stator resistance, Rs, load torque, tL, velocity and flux. To provide robustness against Rr variations, the extended model is also continuously updated with Rr values from a look‐up table, built via EKF estimation.

Findings

As demonstrated by the experimental results, the estimated states and parameters undergo a very short transient and attain their steady‐state values accurately, with no need for signal injection due to the inherent noise introduced by EKF.

Originality/value

The value of this study is in the development of an EKF‐based scheme, which solves the RsRr estimation problem in IM sensorless control. The successful experimental results obtained with the combined EKF and look‐up table approach also offer a solution to all EKF‐based estimation schemes which involve a high number of estimated parameters, hence, compromising estimation accuracy.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 26 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Book part
Publication date: 5 April 2024

Hung-pin Lai

The standard method to estimate a stochastic frontier (SF) model is the maximum likelihood (ML) approach with the distribution assumptions of a symmetric two-sided stochastic…

Abstract

The standard method to estimate a stochastic frontier (SF) model is the maximum likelihood (ML) approach with the distribution assumptions of a symmetric two-sided stochastic error v and a one-sided inefficiency random component u. When v or u has a nonstandard distribution, such as v follows a generalized t distribution or u has a χ2 distribution, the likelihood function can be complicated or untractable. This chapter introduces using indirect inference to estimate the SF models, where only least squares estimation is used. There is no need to derive the density or likelihood function, thus it is easier to handle a model with complicated distributions in practice. The author examines the finite sample performance of the proposed estimator and also compare it with the standard ML estimator as well as the maximum simulated likelihood (MSL) estimator using Monte Carlo simulations. The author found that the indirect inference estimator performs quite well in finite samples.

Book part
Publication date: 22 November 2012

Enrique Martínez-García, Diego Vilán and Mark A. Wynne

Open-Economy models are central to the discussion of the trade-offs monetary policy faces in an increasingly more globalized world (e.g., Marínez-García & Wynne, 2010), but…

Abstract

Open-Economy models are central to the discussion of the trade-offs monetary policy faces in an increasingly more globalized world (e.g., Marínez-García & Wynne, 2010), but bringing them to the data is not without its challenges. Controlling for misspecification bias, we trace the problem of uncertainty surrounding structural parameter estimation in the context of a fully specified New Open Economy Macro (NOEM) model partly to sample size. We suggest that standard macroeconomic time series with a coverage of less than forty years may not be informative enough for some parameters of interest to be recovered with precision. We also illustrate how uncertainty also arises from weak structural identification, irrespective of the sample size. This remains a concern for empirical research and we recommend estimation with simulated observations before using actual data as a way of detecting structural parameters that are prone to weak identification. We also recommend careful evaluation and documentation of the implementation strategy (specially in the selection of observables) as it can have significant effects on the strength of identification of key model parameters.

Details

DSGE Models in Macroeconomics: Estimation, Evaluation, and New Developments
Type: Book
ISBN: 978-1-78190-305-6

Keywords

Book part
Publication date: 16 December 2009

Chinman Chui and Ximing Wu

Knowledge of the dependence structure between financial assets is crucial to improve the performance in financial risk management. It is known that the copula completely…

Abstract

Knowledge of the dependence structure between financial assets is crucial to improve the performance in financial risk management. It is known that the copula completely summarizes the dependence structure among multiple variables. We propose a multivariate exponential series estimator (ESE) to estimate copula densities nonparametrically. The ESE has an appealing information-theoretic interpretation and attains the optimal rate of convergence for nonparametric density estimations in Stone (1982). More importantly, it overcomes the boundary bias of conventional nonparametric copula estimators. Our extensive Monte Carlo studies show the proposed estimator outperforms the kernel and the log-spline estimators in copula estimation. It also demonstrates that two-step density estimation through an ESE copula often outperforms direct estimation of joint densities. Finally, the ESE copula provides superior estimates of tail dependence compared to the empirical tail index coefficient. An empirical examination of the Asian financial markets using the proposed method is provided.

Details

Nonparametric Econometric Methods
Type: Book
ISBN: 978-1-84950-624-3

Article
Publication date: 2 May 2023

Yuqian Zhang, Juergen Seufert and Steven Dellaportas

This study examined subjective numeracy and its relationship with accounting judgements on probability issues.

Abstract

Purpose

This study examined subjective numeracy and its relationship with accounting judgements on probability issues.

Design/methodology/approach

A subjective numeracy scale (SNS) questionnaire was distributed to 231 accounting students to measure self-evaluated numeracy. Modified Bayesian reasoning tasks were applied in an accounting-related probability estimation, manipulating presentation formats.

Findings

The study revealed a positive relationship between self-evaluated numeracy and performance in accounting probability estimation. The findings suggest that switching the format of probability expressions from percentages to frequencies can improve the performance of participants with low self-evaluated numeracy.

Research limitations/implications

Adding objective numeracy measurements could enhance results. Future numeracy research could add objective numeracy items and assess whether this influences participants' self-perceived numeracy. Based on this sample population of accounting students, the findings may not apply to large populations of accounting-information users.

Practical implications

Investors' ability to exercise sound judgement depends on the accuracy of their probability estimations. Manipulating the format of probability expressions can improve probability estimation performance in investors with low self-evaluated numeracy.

Originality/value

This study identified a significant performance gap among participants in performing accounting probability estimations: those with high self-evaluated numeracy performed better than those with low self-evaluated numeracy. The authors also explored a method other than additional training to improve participants' performance on probability estimation tasks and discovered that frequency formats enhanced the performance of participants with low self-evaluated numeracy.

Details

Journal of Applied Accounting Research, vol. 25 no. 1
Type: Research Article
ISSN: 0967-5426

Keywords

Article
Publication date: 14 July 2023

Guozhi Xu, Xican Li and Hong Che

In order to improve the estimation accuracy of soil organic matter, this paper aims to establish a modified model for hyperspectral estimation of soil organic matter content based…

Abstract

Purpose

In order to improve the estimation accuracy of soil organic matter, this paper aims to establish a modified model for hyperspectral estimation of soil organic matter content based on the positive and inverse grey relational degrees.

Design/methodology/approach

Based on 82 soil sample data collected in Daiyue District, Tai'an City, Shandong Province, firstly, the spectral data of soil samples are transformed by the first order differential and logarithmic reciprocal first order differential and so on, the correlation coefficients between the transformed spectral data and soil organic matter content are calculated, and the estimation factors are selected according to the principle of maximum correlation. Secondly, the positive and inverse grey relational degree model is used to identify the samples to be identified, and the initial estimated values of the organic matter content are obtained. Finally, based on the difference information between the samples to be identified and their corresponding known patterns, a modified model for the initial estimation of soil organic matter content is established, and the estimation accuracy of the model is evaluated using the mean relative error and the determination coefficient.

Findings

The results show that the methods of logarithmic reciprocal first order differential and the first-order differential of the square root for transforming the original spectral data are more effective, which could significantly improve the correlation between soil organic matter content and spectral data. The modified model for hyperspectral estimation of soil organic matter has high estimation accuracy, the average relative error (MRE) of 11 test samples is 4.091%, and the determination coefficient (R2) is 0.936. The estimation precision is higher than that of linear regression model, BP neural network and support vector machine model. The application examples show that the modified model for hyperspectral estimation of soil organic matter content based on positive and inverse grey relational degree proposed in this article is feasible and effective.

Social implications

The model in this paper has clear mathematical and physics meaning, simple calculation and easy programming. The model not only fully excavates and utilizes the internal information of known pattern samples with “insufficient and incomplete information”, but also effectively overcomes the randomness and grey uncertainty in the spectral estimation of soil organic matter. The research results not only enrich the grey system theory and methods, but also provide a new approach for hyperspectral estimation of soil properties such as soil organic matter content, water content and so on.

Originality/value

The paper succeeds in realizing both a modified model for hyperspectral estimation of soil organic matter based on the positive and inverse grey relational degrees and effectively dealing with the randomness and grey uncertainty in spectral estimation.

Details

Grey Systems: Theory and Application, vol. 13 no. 4
Type: Research Article
ISSN: 2043-9377

Keywords

Article
Publication date: 20 December 2022

Abdulwahed Fazeli, Saeed Banihashemi, Aso Hajirasouli and Saeed Reza Mohandes

This research aims to develop an automated and optimization algorithms (OAs)-integrated 4D building information modeling (BIM) approach and a prototype and enable construction…

Abstract

Purpose

This research aims to develop an automated and optimization algorithms (OAs)-integrated 4D building information modeling (BIM) approach and a prototype and enable construction managers and practitioners to estimate the time of compound elements in building projects using the resource specification technique.

Design/methodology/approach

A 4D BIM estimation process was first developed by applying the resource specification and geometric information from the BIM model. A suite of OA including particle swarm optimization, ant colony, differential evolution and genetic algorithm were developed and compared in order to facilitate and automate the estimation process. The developed processes and porotypes were linked and integrated.

Findings

The OA-based automated 4D BIM estimation prototype was developed and validated through a real-life construction project. Different OAs were applied and compared, and the genetic algorithm was found as the best performing one. The prototype was successfully linked with BIM timeliner application. By using this approach, the start and finish dates of all object-based activities are developed, and the project completion time is automatically estimated.

Originality/value

Unlike conventional construction estimation methods which need various tools and are error prone and time-consuming, the developed method bypasses the existing time estimation tools and provides the integrated and automated process with BIM and machine learning algorithms. Furthermore, this approach integrates 4D BIM applications into construction design procedures, connected with OA automation.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 27 December 2022

Bright Awuku, Eric Asa, Edmund Baffoe-Twum and Adikie Essegbey

Challenges associated with ensuring the accuracy and reliability of cost estimation of highway construction bid items are of significant interest to state highway transportation…

Abstract

Purpose

Challenges associated with ensuring the accuracy and reliability of cost estimation of highway construction bid items are of significant interest to state highway transportation agencies. Even with the existing research undertaken on the subject, the problem of inaccurate estimation of highway bid items still exists. This paper aims to assess the accuracy of the cost estimation methods employed in the selected studies to provide insights into how well they perform empirically. Additionally, this research seeks to identify, synthesize and assess the impact of the factors affecting highway unit prices because they affect the total cost of highway construction costs.

Design/methodology/approach

This paper systematically searched, selected and reviewed 105 papers from Scopus, Google Scholar, American Society of Civil Engineers (ASCE), Transportation Research Board (TRB) and Science Direct (SD) on conceptual cost estimation of highway bid items. This study used content and nonparametric statistical analyses to determine research trends, identify, categorize the factors influencing highway unit prices and assess the combined performance of conceptual cost prediction models.

Findings

Findings from the trend analysis showed that between 1983 and 2019 North America, Asia, Europe and the Middle East contributed the most to improving highway cost estimation research. Aggregating the quantitative results and weighting the findings using each study's sample size revealed that the average error between the actual and the estimated project costs of Monte-Carlo simulation models (5.49%) performed better compared to the Bayesian model (5.95%), support vector machines (6.03%), case-based reasoning (11.69%), artificial neural networks (12.62%) and regression models (13.96%). This paper identified 41 factors and was grouped into three categories, namely: (1) factors relating to project characteristics; (2) organizational factors and (3) estimate factors based on the common classification used in the selected papers. The mean ranking analysis showed that most of the selected papers used project-specific factors more when estimating highway construction bid items than the other factors.

Originality/value

This paper contributes to the body of knowledge by analyzing and comparing the performance of highway cost estimation models, identifying and categorizing a comprehensive list of cost drivers to stimulate future studies in improving highway construction cost estimates.

Details

Engineering, Construction and Architectural Management, vol. 31 no. 3
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 17 January 2023

Jintao Yu, Xican Li, Shuang Cao and Fajun Liu

In order to overcome the uncertainty and improve the accuracy of spectral estimation, this paper aims to establish a grey fuzzy prediction model of soil organic matter content by…

Abstract

Purpose

In order to overcome the uncertainty and improve the accuracy of spectral estimation, this paper aims to establish a grey fuzzy prediction model of soil organic matter content by using grey theory and fuzzy theory.

Design/methodology/approach

Based on the data of 121 soil samples from Zhangqiu district and Jiyang district of Jinan City, Shandong Province, firstly, the soil spectral data are transformed by spectral transformation methods, and the spectral estimation factors are selected according to the principle of maximum correlation. Then, the generalized greyness of interval grey number is used to modify the estimation factors of modeling samples and test samples to improve the correlation. Finally, the hyper-spectral prediction model of soil organic matter is established by using the fuzzy recognition theory, and the model is optimized by adjusting the fuzzy classification number, and the estimation accuracy of the model is evaluated using the mean relative error and the determination coefficient.

Findings

The results show that the generalized greyness of interval grey number can effectively improve the correlation between soil organic matter content and estimation factors, and the accuracy of the proposed model and test samples are significantly improved, where the determination coefficient R2 = 0.9213 and the mean relative error (MRE) = 6.3630% of 20 test samples. The research shows that the grey fuzzy prediction model proposed in this paper is feasible and effective, and provides a new way for hyper-spectral estimation of soil organic matter content.

Practical implications

The research shows that the grey fuzzy prediction model proposed in this paper can not only effectively deal with the three types of uncertainties in spectral estimation, but also realize the correction of estimation factors, which is helpful to improve the accuracy of modeling estimation. The research result enriches the theory and method of soil spectral estimation, and it also provides a new idea to deal with the three kinds of uncertainty in the prediction problem by using the three kinds of uncertainty theory.

Originality/value

The paper succeeds in realizing both the grey fuzzy prediction model for hyper-spectral estimating soil organic matter content and effectively dealing with the randomness, fuzziness and grey uncertainty in spectral estimation.

Details

Grey Systems: Theory and Application, vol. 13 no. 2
Type: Research Article
ISSN: 2043-9377

Keywords

Article
Publication date: 17 October 2022

Jiayue Zhao, Yunzhong Cao and Yuanzhi Xiang

The safety management of construction machines is of primary importance. Considering that traditional construction machine safety monitoring and evaluation methods cannot adapt to…

Abstract

Purpose

The safety management of construction machines is of primary importance. Considering that traditional construction machine safety monitoring and evaluation methods cannot adapt to the complex construction environment, and the monitoring methods based on sensor equipment cost too much. This paper aims to introduce computer vision and deep learning technologies to propose the YOLOv5-FastPose (YFP) model to realize the pose estimation of construction machines by improving the AlphaPose human pose model.

Design/methodology/approach

This model introduced the object detection module YOLOv5m to improve the recognition accuracy for detecting construction machines. Meanwhile, to better capture the pose characteristics, the FastPose network optimized feature extraction was introduced into the Single-Machine Pose Estimation Module (SMPE) of AlphaPose. This study used Alberta Construction Image Dataset (ACID) and Construction Equipment Poses Dataset (CEPD) to establish the dataset of object detection and pose estimation of construction machines through data augmentation technology and Labelme image annotation software for training and testing the YFP model.

Findings

The experimental results show that the improved model YFP achieves an average normalization error (NE) of 12.94 × 103, an average Percentage of Correct Keypoints (PCK) of 98.48% and an average Area Under the PCK Curve (AUC) of 37.50 × 103. Compared with existing methods, this model has higher accuracy in the pose estimation of the construction machine.

Originality/value

This study extends and optimizes the human pose estimation model AlphaPose to make it suitable for construction machines, improving the performance of pose estimation for construction machines.

Details

Engineering, Construction and Architectural Management, vol. 31 no. 3
Type: Research Article
ISSN: 0969-9988

Keywords

1 – 10 of over 61000