Search results

1 – 10 of 19
Article
Publication date: 2 May 2024

Lingfei Zhang, Longfeng Hou and Yihao Tao

Water jet propulsion is widely used in various military and civilian fields due to its advantages of simple structure and high propulsion efficiency. The process of mooring…

Abstract

Purpose

Water jet propulsion is widely used in various military and civilian fields due to its advantages of simple structure and high propulsion efficiency. The process of mooring involves utilizing specially designed equipment to secure a ship at a designated berth. During the process of water jet propulsion, the single propeller operates within a complex and turbulent three-dimensional flow. Hence, studying the coupling between the water jet propeller and the hull is critical to comprehending the characteristics of the device and the distribution of the flow field in detail.

Design/methodology/approach

Firstly, we conducted computational fluid dynamics (CFD)-based self-propulsion calculations to evaluate the interaction between the hull and the propeller. We subsequently analyzed the propeller's performance and the forces acting on the hull to understand how the presence or absence of the hull influenced the water jet propeller. Finally, we performed calculations and analysis of the cavitation characteristics of the coupling between the hull and the water jet propeller, considering different rotational speeds and water depths at the bottom of the pool.

Findings

The study demonstrated that the presence of the hull boundary layer under the hull-propeller coupling condition led to reduced uniformity of propeller inlet flow and lower efficiency of the propulsion pump. However, it also increased the bias toward low-flow conditions. Additionally, increasing the impeller speed led to a gradual increase in the cavitation volume within the water jet propeller, resulting in a gradual decrease in the propeller's performance.

Originality/value

This research provides the technical support required for effective design and operation of water jet propulsion systems. This paper involves studying and analyzing the performance and flow field of the coupling between the hull and propeller under mooring conditions with a specified hull model.

Details

Engineering Computations, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 30 April 2024

Jinsong Zhang, Xinlong Wang, Chen Yang, Mingkang Sun and Zhenwei Huang

This study aims to investigate the noise-inducing characteristics during the start-up process of a mixed-flow pump and the impact of different start-up schemes on pump noise.

Abstract

Purpose

This study aims to investigate the noise-inducing characteristics during the start-up process of a mixed-flow pump and the impact of different start-up schemes on pump noise.

Design/methodology/approach

This study conducted numerical simulations on the mixed-flow pump under different start-up schemes and investigated the flow characteristics and noise distribution under these schemes.

Findings

The results reveal that the dipole noise is mainly caused by pressure fluctuations, while the quadrupole noise is mainly generated by the generation, development and breakdown of vortices. Additionally, the noise evolution characteristics during the start-up process of the mixed-flow pump can be divided into the initial stage, stable growth stage, impulse stage and stable operation stage.

Originality/value

The findings of this study can provide a theoretical basis for the selection of start-up schemes for mixed-flow pumps, reducing flow noise and improving the operational stability of mixed-flow pumps.

Details

Engineering Computations, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 7 February 2024

Kai Cao, Guodong Qin, Jian Zhou, Jiajun Xu, Linsen Xu and Aihong Ji

With the popularity of high-rise buildings, wall inspection and cleaning are becoming more difficult and associated with danger. The best solution is to replace manual work with…

Abstract

Purpose

With the popularity of high-rise buildings, wall inspection and cleaning are becoming more difficult and associated with danger. The best solution is to replace manual work with wall-climbing robots. Therefore, this paper proposes a design method for a rolling-adsorption wall-climbing robot (RWCR) based on vacuum negative pressure adsorption of the crawler. It can improve the operation efficiency while solving the safety problems.

Design/methodology/approach

The pulleys and tracks are used to form a dynamic sealing chamber to improve the dynamic adsorption effect and motion flexibility of the RWCR. The mapping relationship between the critical minimum adsorption force required for RWCR downward slip, longitudinal tipping and lateral overturning conditions for tipping and the wall inclination angle is calculated using the ultimate force method. The pressure and gas flow rate distribution of the negative pressure chamber under different slit heights of the negative pressure mechanism is analysed by the fluid dynamics software to derive the minimum negative pressure value that the fan needs to provide.

Findings

Simulation and test results show that the load capacity of the RWCR can reach up to 6.2 kg on the smooth glass wall, and the maximum load in the case of lateral movement is 4.2 kg, which verifies the rationality and effectiveness of the design.

Originality/value

This paper presents a new design method of a RWCR for different rough wall surfaces and analyses the ultimate force state and hydrodynamic characteristics.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 7 May 2024

Fang Haifeng, Jun Zhang, Hanlin Sun and Lihua Cai

As a new type of spinning machine, the jet spinning machine absorbs the carding system of the rotating cup spinning series and the nozzle part of the jet spinning. This paper aims…

Abstract

Purpose

As a new type of spinning machine, the jet spinning machine absorbs the carding system of the rotating cup spinning series and the nozzle part of the jet spinning. This paper aims to intends to introduce the double carding structure currently studied by the rotating cup spinning into the jet spinning machine, and analyze the influence of the nozzle characteristic number on the flow field in the double carding structure to verify the advantages of the double carding structure.

Design/methodology/approach

The simulation is used to evaluate the performance of single/double split jet spinning and nozzle feature number, verify the technical advantages of double split jet spinning and evaluate the influence of nozzle feature number on flow field. The influence of the nozzle characteristic number on the flow pattern in the four models is compared. The advantages and disadvantages of a conventional single comb and a double comb with a bypass channel on the longer side of the transport channel as an additional air supply channel are also evaluated.

Findings

At present, the double comb technology of rotary cup spinning is being studied at home and abroad to improve the spinning quality and improve the difficult problem of mixed yarn with large difference in processing fiber properties. At present, the jet spinning machine combines the advantages of rotary cup spinning and jet spinning, absorbing the comb system of rotary cup spinning series and the nozzle part of jet spinning. Therefore, it is found that the introduction of the double-split structure into the wool jet spinning has research value to improve the spinning quality.

Originality/value

The purpose of this paper is to refer to the previous research on the double comb structure in rotary spinning, and to apply the double comb structure in the new jet spinning machine to improve the spinning quality. The simulation is used to evaluate the performance of single/double split jet spinning and nozzle feature number, verify the technical advantages of double split jet spinning and evaluate the influence of nozzle feature number on flow field.

Details

International Journal of Clothing Science and Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 9 January 2024

Fatih Selimefendigil and Hakan F. Oztop

This study aims to examine the effects of cross-flow and multiple jet impingement on conductive panel cooling performance when subjected to uniform magnetic field effects. The…

Abstract

Purpose

This study aims to examine the effects of cross-flow and multiple jet impingement on conductive panel cooling performance when subjected to uniform magnetic field effects. The cooling system has double rotating cylinders.

Design/methodology/approach

Cross-flow ratios (CFR) ranging from 0.1 to 1, magnetic field strength (Ha) ranging from 0 to 50 and cylinder rotation speed (Rew) ranging from −5,000 to 5,000 are the relevant parameters that are included in the numerical analysis. Finite element method is used as solution technique. Radial basis networks are used for the prediction of average Nusselt number (Nu), average surface temperature of the panel and temperature uniformity effects when varying the impacts of cross-flow, magnetic field and rotations of the double cylinder in the cooling channel.

Findings

The effect of CFR on cooling efficiency and temperature uniformity is favorable. By raising the CFR to the highest value under the magnetic field, the average Nu can rise by up to 18.6%, while the temperature drop and temperature difference are obtained as 1.87°C and 3.72°C. Without cylinders, magnetic field improves the cooling performance, while average Nu increases to 4.5% and 8.8% at CR = 0.1 and CR = 1, respectively. When the magnetic field is the strongest with cylinders in channel at CFR = 1, temperature difference (ΔT) is obtained as 2.5 °C. The rotational impacts on thermal performance are more significant when the cross-flow effects are weak (CFR = 0.1) compared to when they are substantial (CFR = 1). Cases without a cylinder have the worst performance for both weak and severe cross-flow effects, whereas using two rotating cylinders increases cooling performance and temperature uniformity for the conductive panel. The average surface temperature lowers by 1.2°C at CFR = 0.1 and 0.5°C at CFR = 1 when the worst and best situations are compared.

Originality/value

The outcomes are relevant in the design and optimization-based studies for electric cooling, photo-voltaic cooling and battery thermal management.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 26 March 2024

Zhiqiang Wang

This paper aims to present a novel lightweight distribution grid operating robot system with focus on lightweight and multi-functionality, aiming for autonomous and live-line…

Abstract

Purpose

This paper aims to present a novel lightweight distribution grid operating robot system with focus on lightweight and multi-functionality, aiming for autonomous and live-line maintenance operations.

Design/methodology/approach

A ground-up redesign of the dual-arm robotic system with 12-DoF is applied for substantial weight reduction; a dual-mode operating control framework is proposed, with vision-guided autonomous operation embedded with real-time manual teleoperation controlling both manipulators simultaneously; a quick-swap tooling system is developed to conduct multi-functional operation tasks. A prototype robotic system is constructed and validated in a series of operational experiments in an emulated environment both indoors and outdoors.

Findings

The overall weight of the system is successfully brought down to under 150 kg, making it suitable for the majority of vehicle-mounted aerial work platforms, and it can be flexibly and quickly deployed in population dense areas with narrow streets. The system equips with two dexterous robotic manipulators and up to six interchangeable tools, and a vision system for AI-based autonomous operations. A quick-change tooling system ensures the robot to change tools on-the-go without human intervention.

Originality/value

The resulting dual-arm robotic live-line operation system robotic system could be compact and lightweight enough to be deployed on a wide range of available aerial working platforms with high mobility and efficiency. The robot could both conduct routine operation tasks fully autonomously without human direct operation and be manually operated when required. The quick-swap tooling system enables lightweight and durable interchangeability of multiple end-effector tools, enabling future expansion of operating capabilities across different tasks and operating scenarios.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 12 April 2024

Xiaodong Yu, Guangqiang Shi, Hui Jiang, Ruichun Dai, Wentao Jia, Xinyi Yang and Weicheng Gao

This paper aims to study the influence of cylindrical texture parameters on the lubrication performance of static and dynamic pressure thrust bearings (hereinafter referred to as…

Abstract

Purpose

This paper aims to study the influence of cylindrical texture parameters on the lubrication performance of static and dynamic pressure thrust bearings (hereinafter referred to as thrust bearings) and to optimize their lubrication performance using multiobjective optimization.

Design/methodology/approach

The influence of texture parameters on the lubrication performance of thrust bearings was studied based on the modified Reynolds equation. The objective functions are predicted through the BP neural network, and the texture parameters were optimized using the improved multiobjective ant lion algorithm (MOALA).

Findings

Compared with smooth surface, the introduction of texture can improve the lubrication properties. Under the optimization of the improved algorithm, when the texture diameter, depth, spacing and number are approximately 0.2 mm, 0.5 mm, 5 mm and 34, respectively, the loading capacity is increased by around 27.7% and the temperature is reduced by around 1.55°C.

Originality/value

This paper studies the effect of texture parameters on the lubrication properties of thrust bearings based on the modified Reynolds equation and performs multiobjective optimization through an improved MOALA.

Details

Industrial Lubrication and Tribology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 8 December 2023

Han Sun, Song Tang, Xiaozhi Qi, Zhiyuan Ma and Jianxin Gao

This study aims to introduce a novel noise filter module designed for LiDAR simultaneous localization and mapping (SLAM) systems. The primary objective is to enhance pose…

Abstract

Purpose

This study aims to introduce a novel noise filter module designed for LiDAR simultaneous localization and mapping (SLAM) systems. The primary objective is to enhance pose estimation accuracy and improve the overall system performance in outdoor environments.

Design/methodology/approach

Distinct from traditional approaches, MCFilter emphasizes enhancing point cloud data quality at the pixel level. This framework hinges on two primary elements. First, the D-Tracker, a tracking algorithm, is grounded on multiresolution three-dimensional (3D) descriptors and adeptly maintains a balance between precision and efficiency. Second, the R-Filter introduces a pixel-level attribute named motion-correlation, which effectively identifies and removes dynamic points. Furthermore, designed as a modular component, MCFilter ensures seamless integration into existing LiDAR SLAM systems.

Findings

Based on rigorous testing with public data sets and real-world conditions, the MCFilter reported an increase in average accuracy of 12.39% and reduced processing time by 24.18%. These outcomes emphasize the method’s effectiveness in refining the performance of current LiDAR SLAM systems.

Originality/value

In this study, the authors present a novel 3D descriptor tracker designed for consistent feature point matching across successive frames. The authors also propose an innovative attribute to detect and eliminate noise points. Experimental results demonstrate that integrating this method into existing LiDAR SLAM systems yields state-of-the-art performance.

Details

Robotic Intelligence and Automation, vol. 44 no. 1
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 10 January 2024

Jian Wei, YuXi Xue, Jing Tian and Fei Guo

This paper aims to investigate the effect of frictional heat on the wear of high-speed rotary lip seals in engines.

Abstract

Purpose

This paper aims to investigate the effect of frictional heat on the wear of high-speed rotary lip seals in engines.

Design/methodology/approach

In this research paper, the authors focus on the high-speed rotating lip seal of aircraft engines. Using the hybrid lubrication theory, a thermal-fluid-solid coupled numerical simulation model is established to investigate the influence of parameters such as contact pressure distribution, temperature rise and leakage rate on the sealing performance under different operating conditions. By incorporating the Rhee wear theory and combining simulation results with experimental data, a method for predicting the wear of the rotating seal lip profile is proposed. Experimental validation is conducted using a high-speed rotating test rig.

Findings

The results indicate that as the speed increases, the rise in frictional heat leads to a decrease in the sealing performance of the lip seal contact region. The experimental results show a similar trend to the numerical simulation results, and considering the effect of frictional heat, the predicted wear of the lip seal profile aligns more closely with the actual wear curve. This highlights the importance of considering the influence of frictional heat in the analysis of rotating seal mechanisms.

Originality/value

This study provides a reference for the prediction of wear profiles of engine high-speed rotary lip seals.

Details

Industrial Lubrication and Tribology, vol. 76 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 16 April 2024

Shilong Zhang, Changyong Liu, Kailun Feng, Chunlai Xia, Yuyin Wang and Qinghe Wang

The swivel construction method is a specially designed process used to build bridges that cross rivers, valleys, railroads and other obstacles. To carry out this construction…

Abstract

Purpose

The swivel construction method is a specially designed process used to build bridges that cross rivers, valleys, railroads and other obstacles. To carry out this construction method safely, real-time monitoring of the bridge rotation process is required to ensure a smooth swivel operation without collisions. However, the traditional means of monitoring using Electronic Total Station tools cannot realize real-time monitoring, and monitoring using motion sensors or GPS is cumbersome to use.

Design/methodology/approach

This study proposes a monitoring method based on a series of computer vision (CV) technologies, which can monitor the rotation angle, velocity and inclination angle of the swivel construction in real-time. First, three proposed CV algorithms was developed in a laboratory environment. The experimental tests were carried out on a bridge scale model to select the outperformed algorithms for rotation, velocity and inclination monitor, respectively, as the final monitoring method in proposed method. Then, the selected method was implemented to monitor an actual bridge during its swivel construction to verify the applicability.

Findings

In the laboratory study, the monitoring data measured with the selected monitoring algorithms was compared with those measured by an Electronic Total Station and the errors in terms of rotation angle, velocity and inclination angle, were 0.040%, 0.040%, and −0.454%, respectively, thus validating the accuracy of the proposed method. In the pilot actual application, the method was shown to be feasible in a real construction application.

Originality/value

In a well-controlled laboratory the optimal algorithms for bridge swivel construction are identified and in an actual project the proposed method is verified. The proposed CV method is complementary to the use of Electronic Total Station tools, motion sensors, and GPS for safety monitoring of swivel construction of bridges. It also contributes to being a possible approach without data-driven model training. Its principal advantages are that it both provides real-time monitoring and is easy to deploy in real construction applications.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

1 – 10 of 19