Search results

1 – 10 of 97
Open Access
Article
Publication date: 13 March 2024

Yanshuang Mei, Xin Xu and Xupin Zhang

Urban digital transformation has become a key strategy in global countries. This study aims to provide a comprehensive and dynamic exploration of the intrinsic traits associated…

Abstract

Purpose

Urban digital transformation has become a key strategy in global countries. This study aims to provide a comprehensive and dynamic exploration of the intrinsic traits associated with urban digital transformation, in order to yield detailed insights that can contribute to the formulation of well-informed decisions and strategies in the field of urban development initiatives.

Design/methodology/approach

Through analysis of parallels between urban digital transformation and gyroscope motion in physics, the study developed the urban digital transformation gyroscope model (UDTGM), which comprises of seven core elements. With the balanced panel dataset from 268 cities at and above the prefecture level in China, we validate the dynamic mechanism of this model.

Findings

The findings of this study underscore that the collaboration among infrastructure development, knowledge-driven forces and economic operations markedly bolsters the urban digital transformation gyroscope’s efficacy.

Practical implications

This research introduces a groundbreaking framework for comprehending urban digital transformation, potentially facilitating its balanced and systemic practical implementation.

Originality/value

This study pioneers the UDTGM theoretically and verifies the dynamic mechanism of this model with real data.

Details

Asia Pacific Journal of Innovation and Entrepreneurship, vol. 18 no. 2
Type: Research Article
ISSN: 2071-1395

Keywords

Article
Publication date: 16 April 2024

Shilong Zhang, Changyong Liu, Kailun Feng, Chunlai Xia, Yuyin Wang and Qinghe Wang

The swivel construction method is a specially designed process used to build bridges that cross rivers, valleys, railroads and other obstacles. To carry out this construction…

Abstract

Purpose

The swivel construction method is a specially designed process used to build bridges that cross rivers, valleys, railroads and other obstacles. To carry out this construction method safely, real-time monitoring of the bridge rotation process is required to ensure a smooth swivel operation without collisions. However, the traditional means of monitoring using Electronic Total Station tools cannot realize real-time monitoring, and monitoring using motion sensors or GPS is cumbersome to use.

Design/methodology/approach

This study proposes a monitoring method based on a series of computer vision (CV) technologies, which can monitor the rotation angle, velocity and inclination angle of the swivel construction in real-time. First, three proposed CV algorithms was developed in a laboratory environment. The experimental tests were carried out on a bridge scale model to select the outperformed algorithms for rotation, velocity and inclination monitor, respectively, as the final monitoring method in proposed method. Then, the selected method was implemented to monitor an actual bridge during its swivel construction to verify the applicability.

Findings

In the laboratory study, the monitoring data measured with the selected monitoring algorithms was compared with those measured by an Electronic Total Station and the errors in terms of rotation angle, velocity and inclination angle, were 0.040%, 0.040%, and −0.454%, respectively, thus validating the accuracy of the proposed method. In the pilot actual application, the method was shown to be feasible in a real construction application.

Originality/value

In a well-controlled laboratory the optimal algorithms for bridge swivel construction are identified and in an actual project the proposed method is verified. The proposed CV method is complementary to the use of Electronic Total Station tools, motion sensors, and GPS for safety monitoring of swivel construction of bridges. It also contributes to being a possible approach without data-driven model training. Its principal advantages are that it both provides real-time monitoring and is easy to deploy in real construction applications.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 2 May 2024

Lingfei Zhang, Longfeng Hou and Yihao Tao

Water jet propulsion is widely used in various military and civilian fields due to its advantages of simple structure and high propulsion efficiency. The process of mooring…

Abstract

Purpose

Water jet propulsion is widely used in various military and civilian fields due to its advantages of simple structure and high propulsion efficiency. The process of mooring involves utilizing specially designed equipment to secure a ship at a designated berth. During the process of water jet propulsion, the single propeller operates within a complex and turbulent three-dimensional flow. Hence, studying the coupling between the water jet propeller and the hull is critical to comprehending the characteristics of the device and the distribution of the flow field in detail.

Design/methodology/approach

Firstly, we conducted computational fluid dynamics (CFD)-based self-propulsion calculations to evaluate the interaction between the hull and the propeller. We subsequently analyzed the propeller's performance and the forces acting on the hull to understand how the presence or absence of the hull influenced the water jet propeller. Finally, we performed calculations and analysis of the cavitation characteristics of the coupling between the hull and the water jet propeller, considering different rotational speeds and water depths at the bottom of the pool.

Findings

The study demonstrated that the presence of the hull boundary layer under the hull-propeller coupling condition led to reduced uniformity of propeller inlet flow and lower efficiency of the propulsion pump. However, it also increased the bias toward low-flow conditions. Additionally, increasing the impeller speed led to a gradual increase in the cavitation volume within the water jet propeller, resulting in a gradual decrease in the propeller's performance.

Originality/value

This research provides the technical support required for effective design and operation of water jet propulsion systems. This paper involves studying and analyzing the performance and flow field of the coupling between the hull and propeller under mooring conditions with a specified hull model.

Details

Engineering Computations, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 7 May 2024

Fang Haifeng, Jun Zhang, Hanlin Sun and Lihua Cai

As a new type of spinning machine, the jet spinning machine absorbs the carding system of the rotating cup spinning series and the nozzle part of the jet spinning. This paper aims…

Abstract

Purpose

As a new type of spinning machine, the jet spinning machine absorbs the carding system of the rotating cup spinning series and the nozzle part of the jet spinning. This paper aims to intends to introduce the double carding structure currently studied by the rotating cup spinning into the jet spinning machine, and analyze the influence of the nozzle characteristic number on the flow field in the double carding structure to verify the advantages of the double carding structure.

Design/methodology/approach

The simulation is used to evaluate the performance of single/double split jet spinning and nozzle feature number, verify the technical advantages of double split jet spinning and evaluate the influence of nozzle feature number on flow field. The influence of the nozzle characteristic number on the flow pattern in the four models is compared. The advantages and disadvantages of a conventional single comb and a double comb with a bypass channel on the longer side of the transport channel as an additional air supply channel are also evaluated.

Findings

At present, the double comb technology of rotary cup spinning is being studied at home and abroad to improve the spinning quality and improve the difficult problem of mixed yarn with large difference in processing fiber properties. At present, the jet spinning machine combines the advantages of rotary cup spinning and jet spinning, absorbing the comb system of rotary cup spinning series and the nozzle part of jet spinning. Therefore, it is found that the introduction of the double-split structure into the wool jet spinning has research value to improve the spinning quality.

Originality/value

The purpose of this paper is to refer to the previous research on the double comb structure in rotary spinning, and to apply the double comb structure in the new jet spinning machine to improve the spinning quality. The simulation is used to evaluate the performance of single/double split jet spinning and nozzle feature number, verify the technical advantages of double split jet spinning and evaluate the influence of nozzle feature number on flow field.

Details

International Journal of Clothing Science and Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 13 February 2024

Jiajun Zhou, Chao Chen, Chun Tian, Gengwei Zhai and Hao Yu

To authenticate the existence and principles of the adhesion recovery phenomenon under water pollution conditions, an innovative circumferential rail–wheel adhesion test rig was…

Abstract

Purpose

To authenticate the existence and principles of the adhesion recovery phenomenon under water pollution conditions, an innovative circumferential rail–wheel adhesion test rig was used. The study conducted extensive tests on the adhesion characteristics under large sliding conditions.

Design/methodology/approach

Experiments were conducted to investigate the influence of speed, axle load and slip on adhesion recovery. Based on the experimental results, the adhesion recovery transition function was re-fitted.

Findings

The study reveals that the adhesion recovery phenomenon truly exists under water conditions. The adhesion coefficient shows an increasing trend with the growth of the slip ratio. Moreover, at the current speed and axle load levels, the adhesion recovery is directly proportional to the square of the slip ratio and inversely proportional to the axle load.

Originality/value

The phenomenon of adhesion recovery and the formulated equations in this study can serve as an experimental and theoretical foundation for the design of braking and anti-skid control algorithms for trains.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-11-2023-0379/

Details

Industrial Lubrication and Tribology, vol. 76 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 11 April 2024

Namrata Gangil, Arshad Noor Siddiquee, Jitendra Yadav, Shashwat Yadav, Vedant Khare, Neelmani Mittal, Sambhav Sharma, Rittik Srivastava and Sohail Mazher Ali Khan M.A.K. Mohammed

The purpose of this paper is to compile a comprehensive status report on pipes/piping networks across different industrial sectors, along with specifications of materials and…

Abstract

Purpose

The purpose of this paper is to compile a comprehensive status report on pipes/piping networks across different industrial sectors, along with specifications of materials and sizes, and showcase welding avenues. It further extends to highlight the promising friction stir welding as a single solid-state pipe welding procedure. This paper will enable all piping, welding and friction stir welding stakeholders to identify scope for their engagement in a single window.

Design/methodology/approach

The paper is a review paper, and it is mainly structured around sections on materials, sizes and standards for pipes in different sectors and the current welding practice for joining pipe and pipe connections; on the process and principle of friction stir welding (FSW) for pipes; identification of main welding process parameters for the FSW of pipes; effects of process parameters; and a well-carved-out concluding summary.

Findings

A well-carved-out concluding summary of extracts from thoroughly studied research is presented in a structured way in which the avenues for the engagement of FSW are identified.

Research limitations/implications

The implications of the research are far-reaching. The FSW is currently expanding very fast in the welding of flat surfaces and has evolved into a vast number of variants because of its advantages and versatility. The application of FSW is coming up late but catching up fast, and as a late starter, the outcomes of such a review paper may support stake holders to expand the application of this process from pipe welding to pipe manufacturing, cladding and other high-end applications. Because the process is inherently inclined towards automation, its throughput rate is high and it does not need any consumables, the ultimate benefit can be passed on to the industry in terms of financial gains.

Originality/value

To the best of the authors’ knowledge, this is the only review exclusively for the friction stir welding of pipes with a well-organized piping specification detailed about industrial sectors. The current pipe welding practice in each sector has been presented, and the avenues for engaging FSW have been highlighted. The FSW pipe process parameters are characteristically distinguished from the conventional FSW, and the effects of the process parameters have been presented. The summary is concise yet comprehensive and organized in a structured manner.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 30 April 2024

Jinsong Zhang, Xinlong Wang, Chen Yang, Mingkang Sun and Zhenwei Huang

This study aims to investigate the noise-inducing characteristics during the start-up process of a mixed-flow pump and the impact of different start-up schemes on pump noise.

Abstract

Purpose

This study aims to investigate the noise-inducing characteristics during the start-up process of a mixed-flow pump and the impact of different start-up schemes on pump noise.

Design/methodology/approach

This study conducted numerical simulations on the mixed-flow pump under different start-up schemes and investigated the flow characteristics and noise distribution under these schemes.

Findings

The results reveal that the dipole noise is mainly caused by pressure fluctuations, while the quadrupole noise is mainly generated by the generation, development and breakdown of vortices. Additionally, the noise evolution characteristics during the start-up process of the mixed-flow pump can be divided into the initial stage, stable growth stage, impulse stage and stable operation stage.

Originality/value

The findings of this study can provide a theoretical basis for the selection of start-up schemes for mixed-flow pumps, reducing flow noise and improving the operational stability of mixed-flow pumps.

Details

Engineering Computations, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 14 March 2024

Weiqiang Xue, Jingfeng Shen and Yawen Fan

The transient loads on the spherical hybrid sliding bearings (SHSBs) rotor system during the process of accelerating to stable speed are related to time, which exhibits a complex…

Abstract

Purpose

The transient loads on the spherical hybrid sliding bearings (SHSBs) rotor system during the process of accelerating to stable speed are related to time, which exhibits a complex transient response of the rotor dynamics. The current study of the shaft center trajectory of the SHSBs rotor system is based on the assumption that the rotational speed is constant, which cannot truly reflect the trajectory of the rotor during operation. The purpose of this paper truly reflects the trajectory of the rotor and further investigates the stability of the rotor system during acceleration of SHSBs.

Design/methodology/approach

The model for accelerated rotor dynamics of SHSBs is established. The model is efficiently solved based on the fourth-order Runge–Kutta method and then to obtain the shaft center trajectory of the rotor during acceleration.

Findings

Results show that the bearing should choose larger angular acceleration in the acceleration process from startup to the working speed; rotor system is more stable. With the target rotational speed increasing, the changes in the shaft trajectory of the acceleration process are becoming more complex, resulting in more time required for the bearing stability. When considering the stability of the rotor system during acceleration, the rotor equations of motion provide a feasible solution for the simulation of bearing rotor system.

Originality/value

The study can simulate the running stability of the shaft system from startup to the working speed in this process, which provides theoretical guidance for the stability of the rotor system of the SHSBs in the acceleration process.

Details

Industrial Lubrication and Tribology, vol. 76 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Open Access
Article
Publication date: 17 February 2023

Luca Pugi, Giulio Rosano, Riccardo Viviani, Leonardo Cabrucci and Luca Bocciolini

The purpose of this work is to optimize the monitoring of vibrations on dynamometric test rigs for railway brakes. This is a quite demanding application considering the continuous…

Abstract

Purpose

The purpose of this work is to optimize the monitoring of vibrations on dynamometric test rigs for railway brakes. This is a quite demanding application considering the continuous increase of performances of high-speed trains that involve higher testing specifications for brake pads and disks.

Design/methodology/approach

In this work, authors propose a mixed approach in which relatively simple finite element models are used to support the optimization of a diagnostic system that is used to monitor vibration levels and rotor-dynamical behavior of the machine. The model is calibrated with experimental data recorded on the same rig that must be identified and monitored. The whole process is optimized to not interfere with normal operations of the rig, using common inertial sensor and tools and are available as standard instrumentation for this kind of applications. So at the end all the calibration activities can be performed normally without interrupting the activities of the rig introducing additional costs due to system unavailability.

Findings

Proposed approach was able to identify in a very simple and fast way the vibrational behavior of the investigated rig, also giving precious information concerning the anisotropic behavior of supports and their damping. All these data are quite difficult to be found in technical literature because they are quite sensitive to assembly tolerances and to many other factors. Dynamometric test rigs are an important application widely diffused for both road and rail vehicles. Also proposed procedure can be easily extended and generalized to a wide value of machine with horizontal rotors.

Originality/value

Most of the studies in literature are referred to electrical motors or turbomachines operating with relatively slow transients and constant inertial properties. For investigated machines both these conditions are not verified, making the proposed application quite unusual and original with respect to current application. At the same time, there is a wide variety of special machines that are usually marginally covered by standard testing methodologies to which the proposed approach can be successfully extended.

Details

World Journal of Engineering, vol. 21 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 21 December 2022

Ravinder Kumar and Sahendra Pal Sharma

This experimental study aims to deal with the improvement of process performance of electric discharge drilling (EDD) for fabricating true blind holes in titanium alloy Ti6Al4V…

Abstract

Purpose

This experimental study aims to deal with the improvement of process performance of electric discharge drilling (EDD) for fabricating true blind holes in titanium alloy Ti6Al4V. Micro EDD was performed on Ti6Al4V and blind holes were drilled into the workpiece.

Design/methodology/approach

The effects of input parameters (i.e. voltage, capacitance and spindle speed) on responses (i.e. material removal rate, tool wear rate and surface roughness [SR]) were evaluated through response surface methodology. The data was analyzed using analysis of variance and multi-optimization was performed for the optimized set of parameters. The optimized process parameters were then used to drill deeper blind holes.

Findings

Blind holes have few characteristics such as SR, taper angle and corner radius. The value of corner radius reflects the quality of the hole produced as well as the amount of tool roundness. The optimized process parameters suggested by the current experimental study lower down the response values (i.e. SR, taper angle and corner radius). The process is found very effective in producing finished blind holes.

Originality/value

This experimental study establishes EDD as a feasible process for the fabrication of truly blind holes in Ti6Al4V.

Details

World Journal of Engineering, vol. 21 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 10 of 97