Search results

1 – 10 of 171
Open Access
Article
Publication date: 25 September 2019

Venkatesh Kodur, Puneet Kumar and Muhammad Masood Rafi

The current fire protection measures in buildings do not account for all contemporary fire hazard issues, which has made fire safety a growing concern. Therefore, this paper aims…

88915

Abstract

Purpose

The current fire protection measures in buildings do not account for all contemporary fire hazard issues, which has made fire safety a growing concern. Therefore, this paper aims to present a critical review of current fire protection measures and their applicability to address current challenges relating to fire hazards in buildings.

Design/methodology/approach

To overcome fire hazards in buildings, impact of fire hazards is also reviewed to set the context for fire protection measures. Based on the review, an integrated framework for mitigation of fire hazards is proposed. The proposed framework involves enhancement of fire safety in four key areas: fire protection features in buildings, regulation and enforcement, consumer awareness and technology and resources advancement. Detailed strategies on improving fire safety in buildings in these four key areas are presented, and future research and training needs are identified.

Findings

Current fire protection measures lead to an unquantified level of fire safety in buildings, provide minimal strategies to mitigate fire hazard and do not account for contemporary fire hazard issues. Implementing key measures that include reliable fire protection systems, proper regulation and enforcement of building code provisions, enhancement of public awareness and proper use of technology and resources is key to mitigating fire hazard in buildings. Major research and training required to improve fire safety in buildings include developing cost-effective fire suppression systems and rational fire design approaches, characterizing new materials and developing performance-based codes.

Practical implications

The proposed framework encompasses both prevention and management of fire hazard. To demonstrate the applicability of this framework in improving fire safety in buildings, major limitations of current fire protection measures are identified, and detailed strategies are provided to address these limitations using proposed fire safety framework.

Social implications

Fire represents a severe hazard in both developing and developed countries and poses significant threat to life, structure, property and environment. The proposed framework has social implications as it addresses some of the current challenges relating to fire hazard in buildings and will enhance overall fire safety.

Originality/value

The novelty of proposed framework lies in encompassing both prevention and management of fire hazard. This is unlike current fire safety improvement strategies, which focus only on improving fire protection features in buildings (i.e. managing impact of fire hazard) using performance-based codes. To demonstrate the applicability of this framework in improving fire safety in buildings, major limitations of current fire protection measures are identified and detailed strategies are provided to address these limitations using proposed fire safety framework. Special emphasis is given to cost-effectiveness of proposed strategies, and research and training needs for further enhancing building fire safety are identified.

Details

PSU Research Review, vol. 4 no. 1
Type: Research Article
ISSN: 2399-1747

Keywords

Content available
Article
Publication date: 1 May 2001

224

Abstract

Details

Disaster Prevention and Management: An International Journal, vol. 10 no. 2
Type: Research Article
ISSN: 0965-3562

Content available
Article
Publication date: 1 May 2002

1314

Abstract

Details

Disaster Prevention and Management: An International Journal, vol. 11 no. 2
Type: Research Article
ISSN: 0965-3562

Open Access
Article
Publication date: 12 April 2022

Hüseyin Emre Ilgın, Markku Karjalainen and Sofie Pelsmakers

This study examined data from 13 international tall residential timber building case studies to increase our understanding of the emerging global trends.

3025

Abstract

Purpose

This study examined data from 13 international tall residential timber building case studies to increase our understanding of the emerging global trends.

Design/methodology/approach

Data were collected through literature surveys and case studies to examine the architectural, structural and constructional points of view to contribute to knowledge about the increasing high-rise timber constructions globally.

Findings

The main findings of this study indicated that: (1) central cores were the most preferred type 10 of core arrangements; (2) frequent use of prismatic forms with rectilinear plans and regular extrusions were identified; (3) the floor-to-floor heights range between 2.81 and 3.30 m with an average of 3 m; (4) the dominance of massive timber use over hybrid construction was observed; (5) the most used structural system was the shear wall system; (6) generally, fire resistance in primary and secondary structural elements exceeded the minimum values specified in the building codes; (7) the reference sound insulation values used for airborne and impact sounds had an average of 50 and 56 dB, respectively.

Originality/value

There is no study in the literature that comprehensively examines the main architectural and structural design considerations of contemporary tall residential timber buildings.

Details

International Journal of Building Pathology and Adaptation, vol. 41 no. 6
Type: Research Article
ISSN: 2398-4708

Keywords

Content available
Article
Publication date: 1 April 2004

160

Abstract

Details

Disaster Prevention and Management: An International Journal, vol. 13 no. 2
Type: Research Article
ISSN: 0965-3562

Open Access
Article
Publication date: 27 January 2022

Soheila Bahrami and Davood Zeinali

This paper explores the quality and flow of facade product information and the capabilities for avoiding the risk of facade fires early in the design process.

2396

Abstract

Purpose

This paper explores the quality and flow of facade product information and the capabilities for avoiding the risk of facade fires early in the design process.

Design/methodology/approach

A qualitative case study using the process tracing method is conducted in two stages. First, a thematic analysis of reports and literature identified two categories for the problems that caused fast fire spread across the Grenfell Tower facade. This enabled classifying the identified problems into four stages of a facade life cycle: product design and manufacturing, procurement, facade design and construction. Second, the capabilities for avoiding the problems were explored by conducting in-depth interviews with 18 experts in nine countries, analyzing design processes and designers' expertise and examining the usability of three digital interfaces in providing required information for designing fire-safe facades.

Findings

The results show fundamental flaws in the quality of facade product information and usability of digital interfaces concerning fire safety. These flaws, fragmented design processes and overreliance on other specialists increase the risk of design defects that cause fast fire spread across facades.

Practical implications

The findings have implications for standardization of building product information, digitalization in industrialized construction and facade design management.

Originality/value

This research adds to the body of knowledge on sustainability in the built environment. It is the first study to highlight the fundamental problem of facade product information, which requires urgent attention in the rapid transition toward digital and industrialized construction.

Details

Smart and Sustainable Built Environment, vol. 12 no. 3
Type: Research Article
ISSN: 2046-6099

Keywords

Content available
Article
Publication date: 1 October 2002

378

Abstract

Details

Disaster Prevention and Management: An International Journal, vol. 11 no. 4
Type: Research Article
ISSN: 0965-3562

Open Access
Article
Publication date: 6 October 2021

Nobuhito Ohtsu, Akihiko Hokugo, Ana Maria Cruz, Yukari Sato, Yuko Araki and Hyejeong Park

This study investigated pre-evacuation times and evacuation behaviors of vulnerable people during the 2018 flooding in Shimobara, Okayama, Japan, and the flood-triggered factory…

1537

Abstract

Purpose

This study investigated pre-evacuation times and evacuation behaviors of vulnerable people during the 2018 flooding in Shimobara, Okayama, Japan, and the flood-triggered factory explosion, a natural hazard-triggered technological accident known as a natural-hazard-triggered technological accidents (Natech). This study examined factors that affected evacuation decisions and pre-evacuation time, estimated the evacuation time in case of no explosion and identified community disaster prevention organization response efforts for vulnerable people.

Design/methodology/approach

Interviews with all 18 vulnerable people who experienced the event were conducted. Multiple regression analysis was used to examine the effect of six factors on evacuation time and reasons for delayed evacuation.

Findings

Factors affecting evacuation decisions included the sound of the explosion, followed by recommendations from relatives and the community disaster prevention organization. Explosion-related injuries delayed early evacuation, but experience of previous disasters and damage had a positive effect on early evacuation. The explosion sound accelerated evacuation of non-injured people; however, explosion-related injuries significantly delayed evacuation of injured individuals. The Shimobara community disaster prevention organization’s disaster response included a vulnerable people registry, visits to all local households and a multilayered approach that enabled monitoring of all households.

Originality/value

This is the first study to examine the evacuation behavior of vulnerable people and community responses during a Natech event.

Details

International Journal of Disaster Resilience in the Built Environment, vol. 14 no. 1
Type: Research Article
ISSN: 1759-5908

Keywords

Content available
Article
Publication date: 1 August 2003

167

Abstract

Details

Disaster Prevention and Management: An International Journal, vol. 12 no. 3
Type: Research Article
ISSN: 0965-3562

Content available
Article
Publication date: 1 April 2005

138

Abstract

Details

Disaster Prevention and Management: An International Journal, vol. 14 no. 2
Type: Research Article
ISSN: 0965-3562

1 – 10 of 171