Search results

1 – 10 of 611
Article
Publication date: 29 February 2024

Atefeh Hemmati, Mani Zarei and Amir Masoud Rahmani

Big data challenges and opportunities on the Internet of Vehicles (IoV) have emerged as a transformative paradigm to change intelligent transportation systems. With the growth of…

Abstract

Purpose

Big data challenges and opportunities on the Internet of Vehicles (IoV) have emerged as a transformative paradigm to change intelligent transportation systems. With the growth of data-driven applications and the advances in data analysis techniques, the potential for data-adaptive innovation in IoV applications becomes an outstanding development in future IoV. Therefore, this paper aims to focus on big data in IoV and to provide an analysis of the current state of research.

Design/methodology/approach

This review paper uses a systematic literature review methodology. It conducts a thorough search of academic databases to identify relevant scientific articles. By reviewing and analyzing the primary articles found in the big data in the IoV domain, 45 research articles from 2019 to 2023 were selected for detailed analysis.

Findings

This paper discovers the main applications, use cases and primary contexts considered for big data in IoV. Next, it documents challenges, opportunities, future research directions and open issues.

Research limitations/implications

This paper is based on academic articles published from 2019 to 2023. Therefore, scientific outputs published before 2019 are omitted.

Originality/value

This paper provides a thorough analysis of big data in IoV and considers distinct research questions corresponding to big data challenges and opportunities in IoV. It also provides valuable insights for researchers and practitioners in evolving this field by examining the existing fields and future directions for big data in the IoV ecosystem.

Details

International Journal of Pervasive Computing and Communications, vol. 20 no. 2
Type: Research Article
ISSN: 1742-7371

Keywords

Open Access
Article
Publication date: 14 March 2024

Zabih Ghelichi, Monica Gentili and Pitu Mirchandani

This paper aims to propose a simulation-based performance evaluation model for the drone-based delivery of aid items to disaster-affected areas. The objective of the model is to…

172

Abstract

Purpose

This paper aims to propose a simulation-based performance evaluation model for the drone-based delivery of aid items to disaster-affected areas. The objective of the model is to perform analytical studies, evaluate the performance of drone delivery systems for humanitarian logistics and can support the decision-making on the operational design of the system – on where to locate drone take-off points and on assignment and scheduling of delivery tasks to drones.

Design/methodology/approach

This simulation model captures the dynamics and variabilities of the drone-based delivery system, including demand rates, location of demand points, time-dependent parameters and possible failures of drones’ operations. An optimization model integrated with the simulation system can update the optimality of drones’ schedules and delivery assignments.

Findings

An extensive set of experiments was performed to evaluate alternative strategies to demonstrate the effectiveness for the proposed optimization/simulation system. In the first set of experiments, the authors use the simulation-based evaluation tool for a case study for Central Florida. The goal of this set of experiments is to show how the proposed system can be used for decision-making and decision-support. The second set of experiments presents a series of numerical studies for a set of randomly generated instances.

Originality/value

The goal is to develop a simulation system that can allow one to evaluate performance of drone-based delivery systems, accounting for the uncertainties through simulations of real-life drone delivery flights. The proposed simulation model captures the variations in different system parameters, including interval of updating the system after receiving new information, demand parameters: the demand rate and their spatial distribution (i.e. their locations), service time parameters: travel times, setup and loading times, payload drop-off times and repair times and drone energy level: battery’s energy is impacted and requires battery change/recharging while flying.

Details

Journal of Humanitarian Logistics and Supply Chain Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2042-6747

Keywords

Article
Publication date: 6 February 2024

Miguel Núñez-Merino, Juan Manuel Maqueira-Marín, José Moyano-Fuentes and Carlos Alberto Castaño-Moraga

The purpose of this paper is to explore and disseminate knowledge about quantum-inspired computing technology's potential to solve complex challenges faced by the operational…

Abstract

Purpose

The purpose of this paper is to explore and disseminate knowledge about quantum-inspired computing technology's potential to solve complex challenges faced by the operational agility capability in Industry 4.0 manufacturing and logistics operations.

Design/methodology/approach

A multi-case study approach is used to determine the impact of quantum-inspired computing technology in manufacturing and logistics processes from the supplier perspective. A literature review provides the basis for a framework to identify a set of flexibility and agility operational capabilities enabled by Industry 4.0 Information and Digital Technologies. The use cases are analyzed in depth, first individually and then jointly.

Findings

Study results suggest that quantum-inspired computing technology has the potential to harness and boost companies' operational flexibility to enhance operational agility in manufacturing and logistics operations management, particularly in the Industry 4.0 context. An exploratory model is proposed to explain the relationships between quantum-inspired computing technology and the deployment of operational agility capabilities.

Originality/value

This is study explores the use of quantum-inspired computing technology in Industry 4.0 operations management and contributes to understanding its potential to enable operational agility capability in manufacturing and logistics operations.

Details

International Journal of Physical Distribution & Logistics Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0960-0035

Keywords

Article
Publication date: 25 November 2022

Zhijia You

The existing literature has been mainly focused on local problems but without an overall framework for studying the top-level planning of intelligent construction from a…

Abstract

Purpose

The existing literature has been mainly focused on local problems but without an overall framework for studying the top-level planning of intelligent construction from a systematic perspective. The purpose of this paper is to fill this gap.

Design/methodology/approach

This research adopts a deductive research approach.

Findings

This research proposes a reference architecture and related business scenario framework for intelligent construction based on the existing theory and industrial practice.

Originality/value

The main contribution of this research is to provide a useful reference to the Chinese government and industry for formulating digital transformation strategies, as well as suggests meaningful future research directions in the construction industry.

Details

Engineering, Construction and Architectural Management, vol. 31 no. 4
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 4 January 2024

Nishant Kulshrestha, Saurabh Agrawal and Deep Shree

Spare Parts Management (SPM) and Industry 4.0 has proven their importance. However, employment of Industry 4.0 solutions for SPM is at emerging stage. To address the issue, this…

Abstract

Purpose

Spare Parts Management (SPM) and Industry 4.0 has proven their importance. However, employment of Industry 4.0 solutions for SPM is at emerging stage. To address the issue, this article is aimed toward a systematic literature review on SPM in Industry 4.0 era and identification of research gaps in the field with prospects.

Design/methodology/approach

Research articles were reviewed and analyzed through a content-based analysis using four step process model. The proposed framework consists of five categories such as Inventory Management, Types of Spares, Circularity based on 6Rs, Performance Indicators and Strategic and Operational. Based on these categories, a total of 118 research articles published between 1998 and 2022 were reviewed.

Findings

The technological solutions of Industry 4.0 concepts have provided numerous opportunities for SPM. Industry 4.0 hi-tech solutions can enhance agility, operational efficiency, quality of product and service, customer satisfaction, sustainability and profitability.

Research limitations/implications

The review of articles provides an integrated framework which recognizes implementation issues and challenges in the field. The proposed framework will support academia and practitioners toward implementation of technological solutions of Industry 4.0 in SPM. Implementation of Industry 4.0 in SPM may help in improving the triple bottom line aspect of sustainability which can make significant contribution to academia, practitioners and society.

Originality/value

The examination uncovered a scarcity of research in the intersection of SPM and Industry 4.0 concepts, suggesting a significant opportunity for additional investigative efforts.

Details

Journal of Quality in Maintenance Engineering, vol. 30 no. 1
Type: Research Article
ISSN: 1355-2511

Keywords

Article
Publication date: 1 June 2023

Satish Kumar, Arun Gupta, Anish Kumar, Pankaj Chandna and Gian Bhushan

Milling is a flexible creation process for the manufacturing of dies and aeronautical parts. While machining thin-walled parts, heat generation during machining essentially…

Abstract

Purpose

Milling is a flexible creation process for the manufacturing of dies and aeronautical parts. While machining thin-walled parts, heat generation during machining essentially affects the accuracy. The workpiece temperature (WT), as well as the responses like material removal rate (MRR) and surface roughness (SR) for input parameters like cutting speed (CS), feed rate (F), depth-of-cut (DOC), step over (SO) and tool diameter (TD), becomes critical for sustaining the accuracy of the thin walls.

Design/methodology/approach

Response surface methodology was used to make 46 tests. To convert the multi-character problem into a single-character problem, the weightage was assessed using the entropy approach and the grey relational coefficient (GRC) was determined. To investigate the connection among input parameters and single-objective (GRC), a fuzzy mathematical modelling technique was used. The optimal performance of process parameters was estimated by grey relational entropy grade (GREG)-fuzzy and genetic algorithm (GA) optimization.

Findings

SR was found to be a significant process parameter, with CS, feed and DOC, respectively. Similarly, F, DOC and TD were found to be significant process parameters with MRR, respectively, and F, DOC, SO and TD were found to be significant process parameters with WT, respectively. GREG-fuzzy-GA found more suitable for minimizing the WT with the constraint s of SR and MRR and provide maximum desirability of 0.665. The projected and experimental values have a good agreement, with a standard error of 5.85%, and so the responses predicted by the suggested method are better optimized.

Originality/value

The GREG-fuzzy-GA is a new hybrid technique for analysing Inconel625 behaviour during machining in a 2.5D milling process.

Details

World Journal of Engineering, vol. 21 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 18 November 2022

Jing Yin, Jiahao Li, Ahui Yang and Shunyao Cai

In regarding to operational efficiency and safety improvements, multiple tower crane service scheduling problem is one of the main problems related to tower crane operation but…

Abstract

Purpose

In regarding to operational efficiency and safety improvements, multiple tower crane service scheduling problem is one of the main problems related to tower crane operation but receives limited attention. The current work presents an optimization model for scheduling multiple tower cranes' service with overlapping areas while achieving collision-free between cranes.

Design/methodology/approach

The cooperative coevolutionary genetic algorithm (CCGA) was proposed to solve this model. Considering the possible types of cross-tasks, through effectively allocating overlapping area tasks to each crane and then prioritizing the assigned tasks for each crane, the makespan of tower cranes was minimized and the crane collision avoidance was achieved by only allowing one crane entering the overlapping area at one time. A case study of the mega project Daxing International Airport has been investigated to evaluate the performance of the proposed algorithm.

Findings

The computational results showed that the CCGA algorithm outperforms two compared algorithms in terms of the optimal makespan and the CPU time. Also, the convergence of CCGA was discussed and compared, which was better than that of traditional genetic algorithm (TGA) for small-sized set (50 tasks) and was almost the same as TGA for large-sized sets.

Originality/value

This paper can provide new perspectives on multiple tower crane service sequencing problem. The proposed model and algorithm can be applied directly to enhance the operational efficiency of tower cranes on construction site.

Details

Engineering, Construction and Architectural Management, vol. 31 no. 3
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 12 October 2022

Thomas Danel, Zoubeir Lafhaj, Anand Puppala, Samer BuHamdan, Sophie Lienard and Philippe Richard

The crane plays an essential role in modern construction sites as it supports numerous operations and activities on-site. Additionally, the crane produces a big amount of data…

244

Abstract

Purpose

The crane plays an essential role in modern construction sites as it supports numerous operations and activities on-site. Additionally, the crane produces a big amount of data that, if analyzed, could significantly affect productivity, progress monitoring and decision-making in construction projects. This paper aims to show the usability of crane data in tracking the progress of activities on-site.

Design/methodology/approach

This paper presents a pattern-based recognition method to detect concrete pouring activities on any concrete-based construction sites. A case study is presented to assess the methodology with a real-life example.

Findings

The analysis of the data helped build a theoretical pattern for concrete pouring activities and detect the different phases and progress of these activities. Accordingly, the data become useable to track progress and identify problems in concrete pouring activities.

Research limitations/implications

The paper presents an example for construction practitioners and researcher about a practical and easy way to analyze the big data that comes from cranes and how it is used in tracking projects' progress. The current study focuses only on concrete pouring activities; future studies can include other types of activities and can utilize the data with other building methods to improve construction productivity.

Practical implications

The proposed approach is supposed to be simultaneously efficient in terms of concrete pouring detection as well as cost-effective. Construction practitioners could track concrete activities using an already-embedded monitoring device.

Originality/value

While several studies in the literature targeted the optimization of crane operations and of mitigating hazards through automation and sensing, the opportunity of using cranes as progress trackers is yet to be fully exploited.

Details

Engineering, Construction and Architectural Management, vol. 31 no. 2
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 8 February 2024

Bassel Kassem, Maira Callupe, Monica Rossi, Matteo Rossini and Alberto Portioli-Staudacher

Prior to managing a company’s processes in the presence of a combination of paradigms, there is a need to understand their underlying interaction. This paper systematically…

Abstract

Purpose

Prior to managing a company’s processes in the presence of a combination of paradigms, there is a need to understand their underlying interaction. This paper systematically reviews the existing literature that discusses the interaction between lean production (LP) and the fourth industrial revolution (i.e. Industry 4.0). The study aims to understand how the interaction unfolds and whether it is synergistic.

Design/methodology/approach

The research relies on a systematic literature review of peer-reviewed articles from Scopus and Web of Science that discuss the interaction between the two paradigms. The final set of articles pertaining to the topic was analysed.

Findings

The article presents that the interaction between the two paradigms occurs through a representation of the pillars of the House of Lean (HoL) interacting with the nine technological pillars of Industry 4.0. There is a consensus on the synergistic nexus among the pillars and their positive impact on operational performance. We also demonstrate the weights of the interactions between the two paradigms and the areas of operations management where this interaction takes place through Sankey charts. Our research indicates that the largest synergistic interaction occurs between just-in-time and industrial Internet of Things (IIoT) and that companies should invest in IoT and cyber-physical systems as they have the greatest weight of interactions with the pillars of the HoL.

Research limitations/implications

This research facilitates a deeper insight into the interaction between LP and Industry 4.0 by organising and discussing existing research on the subject matter. It serves as a starting point for future researchers to formulate hypotheses about the interaction among the various pillars of LP and Industry 4.0, apply these interactions and test them through empirical research.

Practical implications

It could serve as a guide for managers to understand with which interactions they should start the digitalisation process.

Originality/value

With the rise in discussions on the interaction between the two paradigms, there is still an opportunity to understand the specificity of this interaction. Compared to the initial seminal works on the subject, such as Buer et al. (2018b), which investigated the direction of interaction between the two paradigms, this research contributes to further investigating this specificity and gaining a better understanding of the relationship governing the interaction between LP and Industry 4.0 by delineating the interaction state among the pillars of the two paradigms and its relevant importance.

Details

Journal of Manufacturing Technology Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1741-038X

Keywords

Article
Publication date: 28 February 2024

Dat Tien Doan, Tuyet Phuoc Anh Mai, Ali GhaffarianHoseini, Amirhosein Ghaffarianhoseini and Nicola Naismith

This study aims to identify the primary research areas of modern methods of construction (MMC) along with its current trends and developments.

Abstract

Purpose

This study aims to identify the primary research areas of modern methods of construction (MMC) along with its current trends and developments.

Design/methodology/approach

A combination of bibliometric and qualitative analysis is adopted to examine 1,957 MMC articles in the Scopus database. With the support of CiteSpace 6.1.R6, the clusters, leading authors, journals, institutions and countries in the field of MMC are examined.

Findings

Offsite construction, inter-modular connections, augmenting output, prefabricated concrete beams and earthquake-resilient prefabricated beam–column steel joints are the top five research areas in MMC. Among them, offsite construction and inter-modular connections are significantly focused, with many research articles. The potential for collaboration, among prominent authors such as Wang, J., Liu, Y. and Wang, Y., explains the recent rapid growth of the MMC field of research. With a total of 225 articles, Engineering Structures is the journal that has published the most articles on MMC. China is the leading country in this field, and the Ministry of Education China is the top institution in MMC.

Originality/value

The findings of this study bear significant implications for stakeholders in academia and industry alike. In academia, these insights allow researchers to identify research gaps and foster collaboration, steering efforts toward innovative and impactful outcomes. For industries using MMC practices, the clarity provided on MMC techniques facilitates the efficient adoption of best practices, thereby promoting collaboration, innovation and global problem-solving within the construction field.

Details

Construction Innovation , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1471-4175

Keywords

1 – 10 of 611