Search results

1 – 10 of 66
Article
Publication date: 26 January 2022

Rajashekhar U., Neelappa and Harish H.M.

The natural control, feedback, stimuli and protection of these subsequent principles founded this project. Via properly conducted experiments, a multilayer computer rehabilitation…

Abstract

Purpose

The natural control, feedback, stimuli and protection of these subsequent principles founded this project. Via properly conducted experiments, a multilayer computer rehabilitation system was created that integrated natural interaction assisted by electroencephalogram (EEG), which enabled the movements in the virtual environment and real wheelchair. For blind wheelchair operator patients, this paper involved of expounding the proper methodology. For educating the value of life and independence of blind wheelchair users, outcomes have proven that virtual reality (VR) with EEG signals has that potential.

Design/methodology/approach

Individuals face numerous challenges with many disorders, particularly when multiple dysfunctions are diagnosed and especially for visually effected wheelchair users. This scenario, in reality, creates in a degree of incapacity on the part of the wheelchair user in terms of performing simple activities. Based on their specific medical needs, confined patients are treated in a modified method. Independent navigation is secured for individuals with vision and motor disabilities. There is a necessity for communication which justifies the use of VR in this navigation situation. For the effective integration of locomotion besides, it must be under natural guidance. EEG, which uses random brain impulses, has made significant progress in the field of health. The custom of an automated audio announcement system modified to have the help of VR and EEG for the training of locomotion and individualized interaction of wheelchair users with visual disability is demonstrated in this study through an experiment. Enabling the patients who were otherwise deemed incapacitated to participate in social activities, as the aim was to have efficient connections.

Findings

To protect their life straightaway and to report all these disputes, the military system should have high speed, more precise portable prototype device for nursing the soldier health, recognition of solider location and report about health sharing system to the concerned system. Field programmable gate array (FPGA)-based soldier’s health observing and position gratitude system is proposed in this paper. Reliant on heart rate which is centered on EEG signals, the soldier’s health is observed on systematic bases. By emerging Verilog hardware description language (HDL) programming language and executing on Artix-7 development FPGA board of part name XC7ACSG100t the whole work is approved in a Vivado Design Suite. Classification of different abnormalities and cloud storage of EEG along with the type of abnormalities, artifact elimination, abnormalities identification based on feature extraction, exist in the segment of suggested architecture. Irregularity circumstances are noticed through developed prototype system and alert the physically challenged (PHC) individual via an audio announcement. An actual method for eradicating motion artifacts from EEG signals that have anomalies in the PHC person’s brain has been established, and the established system is a portable device that can deliver differences in brain signal variation intensity. Primarily the EEG signals can be taken and the undesirable artifact can be detached, later structures can be mined by discrete wavelet transform these are the two stages through which artifact deletion can be completed. The anomalies in signal can be noticed and recognized by using machine learning algorithms known as multirate support vector machine classifiers when the features have been extracted using a combination of hidden Markov model (HMM) and Gaussian mixture model (GMM). Intended for capable declaration about action taken by a blind person, these result signals are protected in storage devices and conveyed to the controller. Pretending daily motion schedules allows the pretentious EEG signals to be caught. Aimed at the validation of planned system, the database can be used and continued with numerous recorded signals of EEG. The projected strategy executes better in terms of re-storing theta, delta, alpha and beta complexes of the original EEG with less alteration and a higher signal to noise ratio (SNR) value of the EEG signal, which illustrates in the quantitative analysis. The projected method used Verilog HDL and MATLAB software for both formation and authorization of results to yield improved results. Since from the achieved results, it is initiated that 32% enhancement in SNR, 14% in mean squared error (MSE) and 65% enhancement in recognition of anomalies, hence design is effectively certified and proved for standard EEG signals data sets on FPGA.

Originality/value

The proposed system can be used in military applications as it is high speed and excellent precise in terms of identification of abnormality, the developed system is portable and very precise. FPGA-based soldier’s health observing and position gratitude system is proposed in this paper. Reliant on heart rate which is centered on EEG signals the soldier health is observed in systematic bases. The proposed system is developed using Verilog HDL programming language and executing on Artix-7 development FPGA board of part name XC7ACSG100t and synthesised using in Vivado Design Suite software tool.

Details

International Journal of Pervasive Computing and Communications, vol. 19 no. 3
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 9 February 2021

U. Rajashekhar, D. Neelappa and L. Rajesh

This work proposes classification of two-class motor imagery electroencephalogram signals using different automated machine learning algorithms. Here data are decomposed into…

Abstract

Purpose

This work proposes classification of two-class motor imagery electroencephalogram signals using different automated machine learning algorithms. Here data are decomposed into various frequency bands identified by wavelet transform and will span the range of 0–30 Hz.

Design/methodology/approach

Statistical measures will be applied to these frequency bands to identify features that will subsequently be used to train the classifiers. Further, the assessment parameters such as SNR, mean, SD and entropy are calculated to analyze the performance of the proposed work.

Findings

The experimental results show that the proposed work yields better accuracy for all classifiers when compare to state-of-the-art techniques.

Originality/value

The experimental results show that the proposed work yields better accuracy for all classifiers when compare to state-of-the-art techniques.

Details

International Journal of Intelligent Unmanned Systems, vol. 10 no. 1
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 8 October 2019

Manjunatha Gudekote, Rajashekhar Choudhari, Hanumesh Vaidya, Prasad K.V. and Viharika J.U.

The purpose of this paper is to emphasize the peristaltic mechanism of power-law fluid in an elastic porous tube under the influence of slip and convective conditions. The effects…

Abstract

Purpose

The purpose of this paper is to emphasize the peristaltic mechanism of power-law fluid in an elastic porous tube under the influence of slip and convective conditions. The effects of different waveforms on the peristaltic mechanism are taken into account.

Design/methodology/approach

The governing equations are rendered dimensionless using the suitable similarity transformations. The analytical solutions are obtained by using the long wavelength and small Reynold’s number approximations. The expressions for velocity, flow rate, temperature and streamlines are obtained and analyzed graphically. Furthermore, an application to flow through an artery is determined by using a tensile expression given by Rubinow and Keller.

Findings

The principal findings from the present model are as follows. The axial velocity increases with an expansion in the estimation of velocity slip parameter and fluid behavior index, and it diminishes for a larger value of the porous parameter. The magnitude of temperature diminishes with an expansion in the Biot number. The flux is maximum for trapezoidal wave and minimum for the triangular wave when compared with other considered waveforms. The flow rate in an elastic tube increases with an expansion in the porous parameter, and it diminishes with an increment in the slip parameter. The volume of tapered bolus enhances with increasing values of the porous parameter.

Originality/value

The current study finds the application in designing the heart-lung machine and dialysis machine. The investigation further gives a superior comprehension of the peristaltic system associated with the gastrointestinal tract and the stream of blood in small or microvessels.

Details

Multidiscipline Modeling in Materials and Structures, vol. 16 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 3 January 2017

Marneni Narahari, Suresh Kumar Raju Soorapuraju, Rajashekhar Pendyala and Ioan Pop

The purpose of this paper is to present a numerical investigation of the transient two-dimensional natural convective boundary-layer flow of a nanofluid past an isothermal…

Abstract

Purpose

The purpose of this paper is to present a numerical investigation of the transient two-dimensional natural convective boundary-layer flow of a nanofluid past an isothermal vertical plate by incorporating the effects of Brownian motion and thermophoresis in the mathematical model.

Design/methodology/approach

The problem is formulated using the Oberbeck–Boussinesq and the standard boundary-layer approximations. The governing coupled non-linear partial differential equations for conservation of mass, momentum, thermal energy and nanoparticle volume fraction have been solved by using an efficient implicit finite-difference scheme of the Crank–Nicolson type, which is stable and convergent. Numerical computations are performed and the results for velocity, temperature and nanoparticle volume fraction are presented in graphs at different values of system parameters such as Brownian motion parameter, thermophoresis parameter, buoyancy ratio parameter, Prandtl number, Lewis number and dimensionless time. The results for local and average skin-friction and Nusselt number are also presented graphically and discussed thoroughly.

Findings

It is found that the velocity, temperature and nanoparticle volume fraction profiles enhance with respect to time and attain steady-state values as time progresses. The local Nusselt number is found to decrease with increasing thermophoresis parameter, while it increases slightly with increasing Brownian motion parameter. To validate the present numerical results, the steady-state local Nusselt number results for the limiting case of a regular fluid have been compared with the existing well-known results at different Prandtl numbers, and the results are found to be in an excellent agreement.

Research limitations/implications

The present analysis is limited to the transient laminar natural convection flow of a nanofluid past an isothermal semi-infinite vertical plate in the absence of viscous dissipation and thermal radiation. The unsteady natural convection flow of a nanofluid will be investigated for various physical conditions in a future work.

Practical implications

Unsteady flow devices offer potential performance improvements as compared with their steady-state counterparts, and the flow fields in the unsteady flow devices are typically transient in nature. The present study provides very useful information for heat transfer engineers to understand the heat transfer enhancement with the nanofluid flows. The present results have immediate relevance in cooling technologies.

Originality/value

The present research work is relatively original and illustrates the transient nature of the natural convective nanofluid boundary-layer flow in the presence of Brownian motion and thermophoresis.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 20 September 2018

Hanumesh Vaidya, Manjunatha Gudekote, Rajashekhar Choudhari and Prasad K.V.

This paper is concerned with the peristaltic transport of an incompressible non-Newtonian fluid in a porous elastic tube. The impacts of slip and heat transfer on the…

Abstract

Purpose

This paper is concerned with the peristaltic transport of an incompressible non-Newtonian fluid in a porous elastic tube. The impacts of slip and heat transfer on the Herschel-Bulkley fluid are considered. The impacts of relevant parameters on flow rate and temperature are examined graphically. The examination incorporates Newtonian, Power-law and Bingham plastic fluids. The paper aims to discuss these issues.

Design/methodology/approach

The administering equations are solved utilizing long wavelength and low Reynolds number approximations, and exact solutions are acquired for velocity, temperature, flux and stream functions.

Findings

It is seen that the flow rate in a Newtonian fluid is high when contrasted with the Herschel-Bulkley model, and the inlet elastic radius and outlet elastic radius have opposite effects on the flow rate.

Originality/value

The analysis carried out in this paper is about the peristaltic transport of an incompressible non-Newtonian fluid in a porous elastic tube. The impact of slip and heat transfer on a Herschel-Bulkley fluid is taken into account. The impacts of relevant parameters on the flow rate and temperature are examined graphically. The examination incorporates Newtonian, Power-law and Bingham plastic fluids.

Details

Multidiscipline Modeling in Materials and Structures, vol. 14 no. 5
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 8 February 2019

Pengpeng Zhi, Yonghua Li, Bingzhi Chen, Meng Li and Guannan Liu

In a structural optimization design-based single-level response surface, the number of optimal variables is too much, which not only increases the number of experiment times, but…

Abstract

Purpose

In a structural optimization design-based single-level response surface, the number of optimal variables is too much, which not only increases the number of experiment times, but also reduces the fitting accuracy of the response surface. In addition, the uncertainty of the optimal variables and their boundary conditions makes the optimal solution difficult to obtain. The purpose of this paper is to propose a method of fuzzy optimization design-based multi-level response surface to deal with the problem.

Design/methodology/approach

The main optimal variables are determined by Monte Carlo simulation, and are classified into four levels according to their sensitivity. The linear membership function and the optimal level cut set method are applied to deal with the uncertainties of optimal variables and their boundary conditions, as well as the non-fuzzy processing is carried out. Based on this, the response surface function of the first-level design variables is established based on the design of experiments. A combinatorial optimization algorithm is developed to compute the optimal solution of the response surface function and bring the optimal solution into the calculation of the next level response surface, and so on. The objective value of the fourth-level response surface is an optimal solution under the optimal design variables combination.

Findings

The results show that the proposed method is superior to the traditional method in computational efficiency and accuracy, and improves 50.7 and 5.3 percent, respectively.

Originality/value

Most of the previous work on optimization was based on single-level response surface and single optimization algorithm, without considering the uncertainty of design variables. There are very few studies which discuss the optimization efficiency and accuracy of multiple design variables. This research illustrates the importance of uncertainty factors and hierarchical surrogate models for multi-variable optimization design.

Details

International Journal of Structural Integrity, vol. 10 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 6 September 2021

Souad Marzougui, Fateh Mebarek-Oudina, Mourad Magherbi and Ali Mchirgui

The purpose of this paper is to investigate the effects of Ha and the Nanoparticles (NP) volume fraction over the irreversibility and heat transport in Darcy–Forchheimer nanofluid…

Abstract

Purpose

The purpose of this paper is to investigate the effects of Ha and the Nanoparticles (NP) volume fraction over the irreversibility and heat transport in Darcy–Forchheimer nanofluid saturated lid-driven porous medium.

Design/methodology/approach

The present paper highlights entropy generation because of mixed convection for a lid-driven porous enclosure filled through a nanoliquid and submitted to a uniform magnetic field. The analysis is achieved using Darcy–Brinkman–Forchheimer technique. The set of partial differential equations governing the considered system was numerically solved using the finite element method.

Findings

The main observations are as follows. The results indicate that the movement of horizontal wall is an important factor for the entropy generation inside the porous cavity filled through Cu–water nanoliquid. The variation of the thermal entropy generation is linear through NPs volume fraction. The total entropy generation reduces when the Darcy, Hartmann and the nanoparticle volume fraction increase. The porous media and magnetic field effects reduce the total entropy generation.

Practical implications

Interest in studying thermal interactions by convective flow within a saturating porous medium has many fundamental considerations and has received extensive consideration in the literature because of its usefulness in a large variety of engineering applications, such as the energy storage and solar collectors, crystal growth, food processing, nuclear reactors and cooling of electronic devices, etc.

Originality/value

By examining the literature, the authors found that little attention has been paid to entropy generation encountered during convection of nanofluids. Hence, this work aims to numerically study entropy generation and heat transport in a lid-driven porous enclosure filled with a nanoliquid.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 17 May 2021

Wenliang Fan, Wei Shen, Qingbin Zhang and Alfredo H.-S. Ang

The purpose of this study is to improve the efficiency and accuracy of response surface method (RSM), as well as its robustness.

Abstract

Purpose

The purpose of this study is to improve the efficiency and accuracy of response surface method (RSM), as well as its robustness.

Design/methodology/approach

By introducing cut-high-dimensional representation model (HDMR), the delineation of cross terms and the constitution analysis of component function, a new adaptive RSM is presented for reliability calculation, where a sampling scheme is also proposed to help constructing response surface close to limit-state.

Findings

The proposed method has a more feasible process of evaluating undetermined coefficients of each component function than traditional RSM, and performs well in terms of balancing the efficiency and accuracy when compared to the traditional second-order polynomial RSM. Moreover, the proposed method is robust on the parameter in a wide range, indicating that it is able to obtain convergent result in a wide feasible domain of sample points.

Originality/value

This study constructed an adaptive bivariate cut-HDMR by introducing delineation of cross-terms and constitution of univariate component function; and a new sampling technique is proposed.

Details

Engineering Computations, vol. 38 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 4 September 2017

N.B. Naduvinamani, Siddharam Patil and S.S. Siddapur

Nowadays, the use of Newtonian fluid as a lubricant is diminishing day by day, and the use of non-Newtonian fluids has gained importance. This paper presents an analysis of the…

Abstract

Purpose

Nowadays, the use of Newtonian fluid as a lubricant is diminishing day by day, and the use of non-Newtonian fluids has gained importance. This paper presents an analysis of the static characteristics of Rayleigh step slider bearing lubricated with non-Newtonian Rabinowitsch fluid, which has not been studied so far. The purpose of this paper is to derive the modified Reynolds equation for Rabinowitsch fluids for two regions and to obtain the optimum bearing parameters for the Rayleigh step slider bearings.

Design/methodology/approach

The governing equations relevant to the problem under consideration are derived. The modified Reynolds equation is derived, and it is found to be highly non-linear and hence small perturbation method is adopted to find solution.

Findings

From this study it is found that there is an increase in the load-carrying capacity, pressure and frictional coefficients for dilatant fluids as compared to the corresponding Newtonian case. Further, for dilatant lubricants the maximum load-carrying capacity is attained for the slightly larger values of entry region length of Rayleigh step bearing as compared to Newtonian and pseudoplastic lubricants.

Originality/value

Rabinowitsch fluid is used for the study of lubrication characteristics of Rayleigh step bearings. The author believes that the paper presents these results for the first time.

Details

Industrial Lubrication and Tribology, vol. 69 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 8 January 2020

Hailiang Su, Fengchong Lan, Yuyan He and Jiqing Chen

Because of the high computational efficiency, response surface method (RSM) has been widely used in structural reliability analysis. However, for a highly nonlinear limit state…

Abstract

Purpose

Because of the high computational efficiency, response surface method (RSM) has been widely used in structural reliability analysis. However, for a highly nonlinear limit state function (LSF), the approximate accuracy of the failure probability mainly depends on the design point, and the result is that the response surface function composed of initial experimental points rarely fits the LSF exactly. The inaccurate design points usually cause some errors in the traditional RSM. The purpose of this paper is to present a hybrid method combining adaptive moving experimental points strategy and RSM, describing a new response surface using downhill simplex algorithm (DSA-RSM).

Design/methodology/approach

In DSA-RSM, the operation mechanism principle of the basic DSA, in which local descending vectors are automatically generated, was studied. Then, the search strategy of the basic DSA was changed and the RSM approximate model was reconstructed by combining the direct search advantage of DSA with the reliability mechanism of response surface analysis.

Findings

The computational power of the proposed method is demonstrated by solving four structural reliability problems, including the actual engineering problem of a car collision. Compared to specific structural reliability analysis methods, the approach of modified DSA interpolation response surface for structural reliability has a good convergent capability and computational accuracy.

Originality/value

This paper proposes a new RSM technology based on proxy model to complete the reliability analysis. The originality of this paper is to present an improved RSM that adjusts the position of the experimental points judiciously by using the DSA principle to make the fitted response surface closer to the actual limit state surface.

1 – 10 of 66