Search results

1 – 10 of over 87000
Article
Publication date: 5 October 2012

Assefa Semegn and Eamonn Murphy

The purpose of this paper is to introduce a novel approach of designing, specifying, and describing the behavior of software systems in a way that helps to predict their…

Abstract

Purpose

The purpose of this paper is to introduce a novel approach of designing, specifying, and describing the behavior of software systems in a way that helps to predict their reliability from the reliability of the components and their interactions.

Design/methodology/approach

Design imperatives and relevant mathematical documentation techniques for improved reliability predictability of software systems are identified.

Findings

The design approach, which is named design for reliability predictability (DRP), integrates design for change, precise behavioral documentation and structure based reliability prediction to achieve improved reliability predictability of software systems. The specification and documentation approach builds upon precise behavioral specification of interfaces using the trace function method (TFM) and introduces a number of structure functions or connection documents. These functions capture both the static and dynamic behavior of component‐based software systems and are used as a basis for a novel document driven structure based reliability predication model.

Originality/value

Decades of research effort have been spent in software design, mathematical/formal specification and description and reliability prediction of software systems. However, there has been little convergence among these three areas. This paper brings a new direction where the three research areas are unified to create a new design paradigm.

Details

International Journal of Quality & Reliability Management, vol. 29 no. 9
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 13 August 2018

Jinliang Liu, Yanmin Jia, Guanhua Zhang and Jiawei Wang

In the freeze-thaw zone, the pre-stressed concrete of bridge structure will be damaged by freezing-thawing, the bearing capacity of structure will decrease and the safety will be…

Abstract

Purpose

In the freeze-thaw zone, the pre-stressed concrete of bridge structure will be damaged by freezing-thawing, the bearing capacity of structure will decrease and the safety will be affected. The purpose of this paper is to establish the time-dependent resistance degradation model of structure in the freeze-thaw zone, and analysis the structural reliability and remaining service life in different freeze-thaw zones.

Design/methodology/approach

First, according to the theory of structural design, a calculation model of the resistance of pre-stressed concrete structures in f freeze-thaw zone is established. Second, the time-dependent resistance model was verified by the test beam bending failure test results done by the research group, which has been in service for 20 years in freeze-thaw zone. Third, using JC algorithm in MATLAB to calculate the index on the reliability of pre-stressed concrete structure in frozen thawed zones, forecasting the s remaining service life of structure.

Findings

First, the calculation model of the resistance of pre-stressed concrete structures in freeze-thaw zone is accurate and it has excellent applicability. Second, the structural resistance deterioration time in Wet-Warm-Frozen Zone is the earliest. Third, once the pre-stressed reinforcement rusts, the structural reliability index will reach limit value quickly. Finally, the remaining service life of structure meets the designed expectation value only in a few of freeze-thaw zones in China.

Originality/value

The research will provide a reference for the design on the durability of a pre-stressed concrete structure in the freeze-thaw zone. In order to verify the security of pre-stressed concrete structures in the freeze-thaw zone, engineers can use the model presented in this paper for durability checking, it has an important significance.

Details

International Journal of Structural Integrity, vol. 9 no. 4
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 22 June 2012

ZhiQun Liu, YiShang Zhang and WenBo Wang

The purpose of this paper is to optimize the key dimensions parameters of the missile suspension structure to ensure the structural fatigue life (>10000 cycles) with the…

Abstract

Purpose

The purpose of this paper is to optimize the key dimensions parameters of the missile suspension structure to ensure the structural fatigue life (>10000 cycles) with the reliability of 0.995.

Design/methodology/approach

The design objective is the fatigue life reliability of the structure, while the design variables are the four fatigue‐sensitive dimensions. The nominal stress approach is introduced to predict the fatigue life, and it was verified by comparing with experimental data. The second respond surface method is applied to solve the reliability in a finite element‐supported analysis using software MSC Patran/Nastran. A Sequential quadratic programming (SQP) algorithm is used for structure optimization.

Findings

The fillet radius r is the most important factor that influences the fatigue life reliability of the structure. The four optimal dimensions parameters are obtained by a reliability‐based design optimization process with the fatigue life and reliability fulfilling the demands.

Originality/value

The optimal result can be used as the design values for missile suspension structure. The feasibility of the reliability‐based design optimization method is validated for the design of missile suspension structure.

Article
Publication date: 6 February 2017

Janusz Sitek, Marek Koscielski, Janusz Borecki and Tomasz Serzysko

The purpose of this paper is to evaluate the influence of solder powders sizes applied in soldering materials used for Package-on-Package (PoP) system manufacture as well as other…

Abstract

Purpose

The purpose of this paper is to evaluate the influence of solder powders sizes applied in soldering materials used for Package-on-Package (PoP) system manufacture as well as other factors on reliability and mechanical strength of created solder joints in three-dimensional (3D) PoP structures.

Design/methodology/approach

The design of experiments based on the Genichi Taguchi method were used in the investigation. The main factors covered different printed circuit board (PCB) coatings, soldering materials with solder powders sizes from Types 3 to 7 and soldering profiles. The reliability of 3D PoP structures was determined by measurements of resistance of daisy-chain solder joints systems during thermal shocks (TS) cycles. The mechanical strength of solder joints in 3D PoP structures was determined by measurements of a shear force of “Top” layer of 3D structures at T0 and after 1,500 TS. The ANOVA was used for results assessment.

Findings

The size of solder powders applied in soldering materials had small (10 per cent) influence on mechanical strength of solder joints in 3D PoP structures. Small size of solder powder had positive effect on solder joints reliability in 3D PoP structures. Especially important was the selection of solder paste for “Bottom” layer of 3D PoP system (influence 17 per cent). Incorrect soldering profile (influence 46 per cent) or wrong selected PCB coating (influence 35 per cent) can very easily reduce the positive impact of soldering materials on solder joints reliability. It was stated that as low as possible soldering profile and organic solderability preservative (OSP) coating in the case of single-sided PCB are the best for 3D PoP structures due to their reliability.

Originality/value

This paper explains how different sizes of solder powders used nowadays in solder pastes influence on reliability and mechanical strength of the solder joints in 3D PoP structures. The contribution, in numerical values, of soldering materials, soldering profile and PCB coating on 3D PoP structures solder joints reliability as well as recommendations improving reliability of 3D PoP structures solder joints were presented.

Details

Soldering & Surface Mount Technology, vol. 29 no. 1
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 8 July 2022

Da Teng, Yun-Wen Feng, Jun-Yu Chen and Cheng Lu

The purpose of this paper is to briefly summarize and review the theories and methods of complex structures’ dynamic reliability. Complex structures are usually assembled from…

Abstract

Purpose

The purpose of this paper is to briefly summarize and review the theories and methods of complex structures’ dynamic reliability. Complex structures are usually assembled from multiple components and subjected to time-varying loads of aerodynamic, structural, thermal and other physical fields; its reliability analysis is of great significance to ensure the safe operation of large-scale equipment such as aviation and machinery.

Design/methodology/approach

In this paper for the single-objective dynamic reliability analysis of complex structures, the calculation can be categorized into Monte Carlo (MC), outcrossing rate, envelope functions and extreme value methods. The series-parallel and expansion methods, multi-extremum surrogate models and decomposed-coordinated surrogate models are summarized for the multiobjective dynamic reliability analysis of complex structures.

Findings

The numerical complex compound function and turbine blisk are used as examples to illustrate the performance of single-objective and multiobjective dynamic reliability analysis methods. Then the future development direction of dynamic reliability analysis of complex structures is prospected.

Originality/value

The paper provides a useful reference for further theoretical research and engineering application.

Details

International Journal of Structural Integrity, vol. 13 no. 5
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 1 March 1984

Dan M. Frangopol

The paper attempts to establish the connection between structural reliability and structural optimization for the particular case of plastic structures. Along this line, the paper…

Abstract

The paper attempts to establish the connection between structural reliability and structural optimization for the particular case of plastic structures. Along this line, the paper outlines a reliability‐based optimization approach to design plastic structures with uncertain interdependent strengths and acted on by random interdependent loads. The importance of such interdependencies, and of some of the other statistical parameters used as input data in probabilistic computations, is demonstrated by several examples of sensitivity studies on both the probability of collapse failure as well as the reliability‐based optimum solution.

Details

Engineering Computations, vol. 1 no. 3
Type: Research Article
ISSN: 0264-4401

Article
Publication date: 20 November 2009

Bill Birch

The purpose of this paper is to identify and expand upon the understanding of the reliability of high density interconnect (HDI) technologies containing multi‐level microvia…

Abstract

Purpose

The purpose of this paper is to identify and expand upon the understanding of the reliability of high density interconnect (HDI) technologies containing multi‐level microvia interconnections with 2, 3 or 4 stacked and staggered configured structures.

Design/methodology/approach

Microvia testing was performed with interconnect stress testing (IST) using a modified methodology documented in the IPC test methods manual TM650, Method 2.6.26, titled DC current induced thermal cycle test. The IST coupon designs utilize mathematical modeling, in combination with prior experience in the fields of printed wiring board (PWB) processing, chemistry, materials and statistics, to improve the sensitivity of testing.

Findings

Single and 2 stack microvias are generally the most robust type of copper interconnection used in HDI applications, 3 stack and 4 stack require greater discipline to assure product reliability. Ranking the inherent reliability of 3 stack and 4 stack structures to other interconnects like plated through holes, blind, or buried vias, may need to be reconsidered in future reliability test programs.

Research limitations/implications

This work was focused on the reliability of bare board and does not address failure modes associated with the additional stresses applied to the microvia structures created by the devices and their associated solder joints formed during surface mount assembly and rework operations.

Originality/value

This paper was written to improve the understanding of various aspects of design and their influence on reliability for stacked and staggered microvia structures. The design function must understand the physical construction as a critical influence on microvia reliability that should be taken into consideration in parallel with the electrical requirements.

Details

Circuit World, vol. 35 no. 4
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 16 June 2010

Jhojan Enrique Rojas, Othmane Bendaou, Abdelkhalak El Hami and Domingos Rade

The purpose of this paper is to present a deterministic, stochastic and reliability analysis through numerical simulations in 2D and 3D dynamic fluid‐structure interaction…

Abstract

Purpose

The purpose of this paper is to present a deterministic, stochastic and reliability analysis through numerical simulations in 2D and 3D dynamic fluid‐structure interaction problems.

Design/methodology/approach

The perturbation methods allied to reliability analysis are applied to fluid‐structure finite element models. Reliability analysis couples finite element analysis with first and second order reliability methods and ant colony optimization in a modified first order reliability method.

Findings

Results obtained show the potentialities of the proposed methodology and encourage improvement of this procedure for use in complex coupled fluid‐structure systems.

Originality/value

The understanding of the mechanical interaction between a fluid and an elastic solid has a capital importance in several industrial applications. In order to couple the behaviour of two different media, deterministic models have been proposed. However, stochastic analysis has been developed to deal with the statistical nature of fluid‐structure interaction parameters. Moreover, probabilistic‐based reliability analysis intends to find safe and cost‐effective projects.

Details

Multidiscipline Modeling in Materials and Structures, vol. 6 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

Content available
Article
Publication date: 21 July 2022

Amar Messas, Karim Benyahi, Arezki Adjrad, Youcef Bouafia and Sarah Benakli

The purpose of this study, is to deals with capacity design (strong column – weak beam) in reinforced concrete frames, slightly slender, which depends on the determination of a…

Abstract

Purpose

The purpose of this study, is to deals with capacity design (strong column – weak beam) in reinforced concrete frames, slightly slender, which depends on the determination of a capacity ratio necessary to reach a structural plastic mechanism. To find the capacity ratio allowing to achieve a fairly ductile behavior in reinforced concrete frames, it is necessary to validate this concept by a non-linear static analysis (push-over). However, this analysis is carried out by the use of the ETABS software, and by the introduction into the beams and columns of plastic hinges according to FEMA-356 code.

Design/methodology/approach

This approach makes it possible to assess seismic performance, which facilitates the establishment of a system for detecting the plasticization mechanisms of structures. It is also necessary to use a probabilistic method allowing to treat the dimensioning by the identification of the most probable mechanisms and to take only those that contribute the most to the probability of global failure of the structural system.

Findings

In this study, three reinforced concrete frame buildings with different numbers of floors were analyzed by varying the capacity ratio of the elements. The results obtained indicate that it is strongly recommended to increase the ratio of the resistant moments of the columns on those of the beams for the Algerian seismic regulation (RPA code), knowing that the frameworks in reinforced concrete are widespread in the country.

Originality/value

The main interest of this paper is to criticize the resistance condition required by RPA code, which must be the subject of particular attention to reach a mechanism of favorable collapse. This study recommends, on the basis of a reliability analysis, the use of a capacity dimensioning ratio greater than or equal to two, making it possible to have a sufficiently low probability of failure to ensure a level of security for users.

Details

World Journal of Engineering, vol. 19 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 5 September 2023

Shiyuan Yang, Debiao Meng, Yipeng Guo, Peng Nie and Abilio M.P. de Jesus

In order to solve the problems faced by First Order Reliability Method (FORM) and First Order Saddlepoint Approximation (FOSA) in structural reliability optimization, this paper…

130

Abstract

Purpose

In order to solve the problems faced by First Order Reliability Method (FORM) and First Order Saddlepoint Approximation (FOSA) in structural reliability optimization, this paper aims to propose a new Reliability-based Design Optimization (RBDO) strategy for offshore engineering structures based on Original Probabilistic Model (OPM) decoupling strategy. The application of this innovative technique to other maritime structures has the potential to substantially improve their design process by optimizing cost and enhancing structural reliability.

Design/methodology/approach

In the strategy proposed by this paper, sequential optimization and reliability assessment method and surrogate model are used to improve the efficiency for solving RBDO. The strategy is applied to the analysis of two marine engineering structure cases of ship cargo hold structure and frame ring of underwater skirt pile gripper. The effectiveness of the method is proved by comparing the original design and the optimized results.

Findings

In this paper, the proposed new RBDO strategy is used to optimize the design of the ship cargo hold structure and the frame ring of the underwater skirt pile gripper. According to the results obtained, compared with the original design, the structure of optimization design has better reliability and stability, and reduces the risk of failure. This optimization can also better balance the relationship between performance and cost. Therefore, it is recommended for related RBDO problems in the field of marine engineering.

Originality/value

In view of the limitations of FORM and FOSA that may produce multiple MPPs for a single performance function, the new RBDO strategy proposed in this study provides valuable insights and robust methods for the optimization design of offshore engineering structures. It emphasizes the importance of combining advanced MPP search technology and integrating SORA and surrogate models to achieve more economical and reliable design.

Details

International Journal of Structural Integrity, vol. 14 no. 5
Type: Research Article
ISSN: 1757-9864

Keywords

1 – 10 of over 87000