Search results

1 – 10 of over 1000
Open Access
Article
Publication date: 23 September 2024

Ali Doostvandi, Mohammad HajiAzizi and Fatemeh Pariafsai

This study aims to use regression Least-Square Support Vector Machine (LS-SVM) as a probabilistic model to determine the factor of safety (FS) and probability of failure (PF) of…

Abstract

Purpose

This study aims to use regression Least-Square Support Vector Machine (LS-SVM) as a probabilistic model to determine the factor of safety (FS) and probability of failure (PF) of anisotropic soil slopes.

Design/methodology/approach

This research uses machine learning (ML) techniques to predict soil slope failure. Due to the lack of analytical solutions for measuring FS and PF, it is more convenient to use surrogate models like probabilistic modeling, which is suitable for performing repetitive calculations to compute the effect of uncertainty on the anisotropic soil slope stability. The study first uses the Limit Equilibrium Method (LEM) based on a probabilistic evaluation over the Latin Hypercube Sampling (LHS) technique for two anisotropic soil slope profiles to assess FS and PF. Then, using one of the supervised methods of ML named LS-SVM, the outcomes (FS and PF) were compared to evaluate the efficiency of the LS-SVM method in predicting the stability of such complex soil slope profiles.

Findings

This method increases the computational performance of low-probability analysis significantly. The compared results by FS-PF plots show that the proposed method is valuable for analyzing complex slopes under different probabilistic distributions. Accordingly, to obtain a precise estimate of slope stability, all layers must be included in the probabilistic modeling in the LS-SVM method.

Originality/value

Combining LS-SVM and LEM offers a unique and innovative approach to address the anisotropic behavior of soil slope stability analysis. The initiative part of this paper is to evaluate the stability of an anisotropic soil slope based on one ML method, the Least-Square Support Vector Machine (LS-SVM). The soil slope is defined as complex because there are uncertainties in the slope profile characteristics transformed to LS-SVM. Consequently, several input parameters are effective in finding FS and PF as output parameters.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Abstract

Details

Machine Learning and Artificial Intelligence in Marketing and Sales
Type: Book
ISBN: 978-1-80043-881-1

Article
Publication date: 21 November 2023

Armin Mahmoodi, Leila Hashemi and Milad Jasemi

In this study, the central objective is to foresee stock market signals with the use of a proper structure to achieve the highest accuracy possible. For this purpose, three hybrid…

Abstract

Purpose

In this study, the central objective is to foresee stock market signals with the use of a proper structure to achieve the highest accuracy possible. For this purpose, three hybrid models have been developed for the stock markets which are a combination of support vector machine (SVM) with meta-heuristic algorithms of particle swarm optimization (PSO), imperialist competition algorithm (ICA) and genetic algorithm (GA).All the analyses are technical and are based on the Japanese candlestick model.

Design/methodology/approach

Further as per the results achieved, the most suitable algorithm is chosen to anticipate sell and buy signals. Moreover, the authors have compared the results of the designed model validations in this study with basic models in three articles conducted in the past years. Therefore, SVM is examined by PSO. It is used as a classification agent to search the problem-solving space precisely and at a faster pace. With regards to the second model, SVM and ICA are tested to stock market timing, in a way that ICA is used as an optimization agent for the SVM parameters. At last, in the third model, SVM and GA are studied, where GA acts as an optimizer and feature selection agent.

Findings

As per the results, it is observed that all new models can predict accurately for only 6 days; however, in comparison with the confusion matrix results, it is observed that the SVM-GA and SVM-ICA models have correctly predicted more sell signals, and the SCM-PSO model has correctly predicted more buy signals. However, SVM-ICA has shown better performance than other models considering executing the implemented models.

Research limitations/implications

In this study, the data for stock market of the years 2013–2021 were analyzed; the long length of timeframe makes the input data analysis challenging as they must be moderated with respect to the conditions where they have been changed.

Originality/value

In this study, two methods have been developed in a candlestick model; they are raw-based and signal-based approaches in which the hit rate is determined by the percentage of correct evaluations of the stock market for a 16-day period.

Details

EuroMed Journal of Business, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1450-2194

Keywords

Article
Publication date: 29 December 2023

Thanh-Nghi Do and Minh-Thu Tran-Nguyen

This study aims to propose novel edge device-tailored federated learning algorithms of local classifiers (stochastic gradient descent, support vector machines), namely, FL-lSGD…

Abstract

Purpose

This study aims to propose novel edge device-tailored federated learning algorithms of local classifiers (stochastic gradient descent, support vector machines), namely, FL-lSGD and FL-lSVM. These algorithms are designed to address the challenge of large-scale ImageNet classification.

Design/methodology/approach

The authors’ FL-lSGD and FL-lSVM trains in a parallel and incremental manner to build an ensemble local classifier on Raspberry Pis without requiring data exchange. The algorithms load small data blocks of the local training subset stored on the Raspberry Pi sequentially to train the local classifiers. The data block is split into k partitions using the k-means algorithm, and models are trained in parallel on each data partition to enable local data classification.

Findings

Empirical test results on the ImageNet data set show that the authors’ FL-lSGD and FL-lSVM algorithms with 4 Raspberry Pis (Quad core Cortex-A72, ARM v8, 64-bit SoC @ 1.5GHz, 4GB RAM) are faster than the state-of-the-art LIBLINEAR algorithm run on a PC (Intel(R) Core i7-4790 CPU, 3.6 GHz, 4 cores, 32GB RAM).

Originality/value

Efficiently addressing the challenge of large-scale ImageNet classification, the authors’ novel federated learning algorithms of local classifiers have been tailored to work on the Raspberry Pi. These algorithms can handle 1,281,167 images and 1,000 classes effectively.

Details

International Journal of Web Information Systems, vol. 20 no. 1
Type: Research Article
ISSN: 1744-0084

Keywords

Open Access
Article
Publication date: 8 December 2023

Armin Mahmoodi, Leila Hashemi, Amin Mahmoodi, Benyamin Mahmoodi and Milad Jasemi

The proposed model has been aimed to predict stock market signals by designing an accurate model. In this sense, the stock market is analysed by the technical analysis of Japanese…

Abstract

Purpose

The proposed model has been aimed to predict stock market signals by designing an accurate model. In this sense, the stock market is analysed by the technical analysis of Japanese Candlestick, which is combined by the following meta heuristic algorithms: support vector machine (SVM), meta-heuristic algorithms, particle swarm optimization (PSO), imperialist competition algorithm (ICA) and genetic algorithm (GA).

Design/methodology/approach

In addition, among the developed algorithms, the most effective one is chosen to determine probable sell and buy signals. Moreover, the authors have proposed comparative results to validate the designed model in this study with the same basic models of three articles in the past. Hence, PSO is used as a classification method to search the solution space absolutelyand with the high speed of running. In terms of the second model, SVM and ICA are examined by the time. Where the ICA is an improver for the SVM parameters. Finally, in the third model, SVM and GA are studied, where GA acts as optimizer and feature selection agent.

Findings

Results have been indicated that, the prediction accuracy of all new models are high for only six days, however, with respect to the confusion matrixes results, it is understood that the SVM-GA and SVM-ICA models have correctly predicted more sell signals, and the SCM-PSO model has correctly predicted more buy signals. However, SVM-ICA has shown better performance than other models considering executing the implemented models.

Research limitations/implications

In this study, the authors to analyze the data the long length of time between the years 2013–2021, makes the input data analysis challenging. They must be changed with respect to the conditions.

Originality/value

In this study, two methods have been developed in a candlestick model, they are raw based and signal-based approaches which the hit rate is determined by the percentage of correct evaluations of the stock market for a 16-day period.

Details

Journal of Capital Markets Studies, vol. 8 no. 1
Type: Research Article
ISSN: 2514-4774

Keywords

Article
Publication date: 7 April 2015

Jie Sun, Hui Li, Pei-Chann Chang and Qing-Hua Huang

Previous researches on credit scoring mainly focussed on static modeling on panel sample data set in a certain period of time, and did not pay enough attention on dynamic…

Abstract

Purpose

Previous researches on credit scoring mainly focussed on static modeling on panel sample data set in a certain period of time, and did not pay enough attention on dynamic incremental modeling. The purpose of this paper is to address the integration of branch and bound algorithm with incremental support vector machine (SVM) ensemble to make dynamic modeling of credit scoring.

Design/methodology/approach

This new model hybridizes support vectors of old data with incremental financial data of corporate in the process of dynamic ensemble modeling based on bagged SVM. In the incremental stage, multiple base SVM models are dynamically adjusted according to bagged new updated information for credit scoring. These updated base models are further combined to generate a dynamic credit scoring. In the empirical experiment, the new method was compared with the traditional model of non-incremental SVM ensemble for credit scoring.

Findings

The results show that the new model is able to continuously and dynamically adjust credit scoring according to corporate incremental information, which helps produce better evaluation ability than the traditional model.

Originality/value

This research pioneered on dynamic modeling for credit scoring with incremental SVM ensemble. As time pasts, new incremental samples will be combined with support vectors of old samples to construct SVM ensemble credit scoring model. The incremental model will continuously adjust itself to keep good evaluation performance.

Details

Kybernetes, vol. 44 no. 4
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 28 March 2008

József Valyon and Gábor Horváth

The purpose of this paper is to present extended least squares support vector machines (LS‐SVM) where data selection methods are used to get sparse LS‐SVM solution, and to…

Abstract

Purpose

The purpose of this paper is to present extended least squares support vector machines (LS‐SVM) where data selection methods are used to get sparse LS‐SVM solution, and to overview and compare the most important data selection approaches.

Design/methodology/approach

The selection methods are compared based on their theoretical background and using extensive simulations.

Findings

The paper shows that partial reduction is an efficient way of getting a reduced complexity sparse LS‐SVM solution, while partial reduction exploits full knowledge contained in the whole training data set. It also shows that the reduction technique based on reduced row echelon form (RREF) of the kernel matrix is superior when compared to other data selection approaches.

Research limitations/implications

Data selection for getting a sparse LS‐SVM solution can be done in the different representations of the training data: in the input space, in the intermediate feature space, and in the kernel space. Selection in the kernel space can be obtained by finding an approximate basis of the kernel matrix.

Practical implications

The RREF‐based method is a data selection approach with a favorable property: there is a trade‐off tolerance parameter that can be used for balancing complexity and accuracy.

Originality/value

The paper gives contributions to the construction of high‐performance and moderate complexity LS‐SVMs.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 1 no. 1
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 18 September 2018

Anan Zhang, Pengxiang Zhang and Yating Feng

The study aims to accomplish the short-term load forecasting for microgrids. Short-term load forecasting is a vital component of economic dispatch in microgrids, and the…

Abstract

Purpose

The study aims to accomplish the short-term load forecasting for microgrids. Short-term load forecasting is a vital component of economic dispatch in microgrids, and the forecasting error directly affects the economic efficiency of operation. To some extent, short-term load forecasting is more difficult in microgrids than in macrogrids.

Design/methodology/approach

This paper presents the method of Dragonfly Algorithm-based support vector machine (DA-SVM) to forecast the short-term load in microgrids. This method adopts the combination of penalty factor C and kernel parameters of SVM which needs to be optimized as the position of dragonfly to find the solution. It takes the forecast accuracy calculated by SVM as the current fitness value of dragonfly and the optimal position of dragonfly obtained through iteration is considered as the optimal combination of parameters C and s of SVM.

Findings

DA-SVM algorithm was used to do short-term load forecast in the microgrid of an offshore oilfield group in the Bohai Sea, China and the forecasting results were compared with those of PSO-SVM, GA-SVM and BP neural network models. The experimental results indicate that the DA-SVM algorithm has better global searching ability. In the case of study, the root mean square errors of DA-SVA are about 1.5 per cent and its computation time is saved about 50 per cent.

Originality/value

The DA-SVM model presented in this paper provides an efficient and effective method of short-term load forecasting for a microgrid electric power system.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 38 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 17 February 2022

Prajakta Thakare and Ravi Sankar V.

Agriculture is the backbone of a country, contributing more than half of the sector of economy throughout the world. The need for precision agriculture is essential in evaluating…

Abstract

Purpose

Agriculture is the backbone of a country, contributing more than half of the sector of economy throughout the world. The need for precision agriculture is essential in evaluating the conditions of the crops with the aim of determining the proper selection of pesticides. The conventional method of pest detection fails to be stable and provides limited accuracy in the prediction. This paper aims to propose an automatic pest detection module for the accurate detection of pests using the hybrid optimization controlled deep learning model.

Design/methodology/approach

The paper proposes an advanced pest detection strategy based on deep learning strategy through wireless sensor network (WSN) in the agricultural fields. Initially, the WSN consisting of number of nodes and a sink are clustered as number of clusters. Each cluster comprises a cluster head (CH) and a number of nodes, where the CH involves in the transfer of data to the sink node of the WSN and the CH is selected using the fractional ant bee colony optimization (FABC) algorithm. The routing process is executed using the protruder optimization algorithm that helps in the transfer of image data to the sink node through the optimal CH. The sink node acts as the data aggregator and the collection of image data thus obtained acts as the input database to be processed to find the type of pest in the agricultural field. The image data is pre-processed to remove the artifacts present in the image and the pre-processed image is then subjected to feature extraction process, through which the significant local directional pattern, local binary pattern, local optimal-oriented pattern (LOOP) and local ternary pattern (LTP) features are extracted. The extracted features are then fed to the deep-convolutional neural network (CNN) in such a way to detect the type of pests in the agricultural field. The weights of the deep-CNN are tuned optimally using the proposed MFGHO optimization algorithm that is developed with the combined characteristics of navigating search agents and the swarming search agents.

Findings

The analysis using insect identification from habitus image Database based on the performance metrics, such as accuracy, specificity and sensitivity, reveals the effectiveness of the proposed MFGHO-based deep-CNN in detecting the pests in crops. The analysis proves that the proposed classifier using the FABC+protruder optimization-based data aggregation strategy obtains an accuracy of 94.3482%, sensitivity of 93.3247% and the specificity of 94.5263%, which is high as compared to the existing methods.

Originality/value

The proposed MFGHO optimization-based deep-CNN is used for the detection of pest in the crop fields to ensure the better selection of proper cost-effective pesticides for the crop fields in such a way to increase the production. The proposed MFGHO algorithm is developed with the integrated characteristic features of navigating search agents and the swarming search agents in such a way to facilitate the optimal tuning of the hyperparameters in the deep-CNN classifier for the detection of pests in the crop fields.

Details

Journal of Engineering, Design and Technology , vol. 22 no. 3
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 6 July 2015

Chengwei Fei, Wenzhong Tang, Guangchen Bai and Shuang Ma

This paper aims to reasonably quantify the radial deformation of turbine blade from a probabilistic design perspective. A probabilistic design for turbine blade radial deformation…

Abstract

Purpose

This paper aims to reasonably quantify the radial deformation of turbine blade from a probabilistic design perspective. A probabilistic design for turbine blade radial deformation considering non-linear dynamic influences can quantify risk and thus control blade tip clearance to further develop the high performance and high reliability of aeroengine. Moreover, the need for a cost-effective design has resulted in the development of probabilistic design method with high computational efficiency and accuracy to quantify the effects of these uncertainties.

Design/methodology/approach

An extremum response surface method-based support vector machine (SVM-ERSM) was proposed based on SVM of regression to improve the computational efficiency and precision of blade radial deformation dynamic probabilistic design regarding non-linear material properties and dynamically thermal and mechanical loads.

Findings

Through the example calculation and comparison of methods, the results show that the blade radial deformation reaches at the maximum at t = 180 s; the probabilistic distribution and inverse probabilistic features of output parameters and the major factors (rotor speed and gas temperature) are gained; besides, the SVM-ERSM holds high computational efficiency and precision in the non-linear dynamic probabilistic design of aeroengine typical components.

Practical implications

The present efforts provide a method to design turbine besides other aeroengine components considering dynamic and non-linear factors base on probabilistic design for further research.

Social implications

Moreover, the present study provides a way to design dynamic (motion) structures from a probabilistic perspective.

Originality/value

It is proved that the dynamic probabilistic design-based SVM-ERSM could produce a more reasonable blade radial deformation while maintaining low failure probability, as well as offer a useful reference for blade-tip clearance control and a promising insight to the optimal design of aeroengine typical components.

Details

Aircraft Engineering and Aerospace Technology: An International Journal, vol. 87 no. 4
Type: Research Article
ISSN: 0002-2667

Keywords

1 – 10 of over 1000