Search results

1 – 10 of 596
Article
Publication date: 1 April 2006

Jaroslav Mackerle

To provide a selective bibliography for researchers working with bulk material forming (specifically the forging, rolling, extrusion and drawing processes) with sources which can…

4712

Abstract

Purpose

To provide a selective bibliography for researchers working with bulk material forming (specifically the forging, rolling, extrusion and drawing processes) with sources which can help them to be up‐to‐date.

Design/methodology/approach

A range of published (1996‐2005) works, which aims to provide theoretical as well as practical information on the material processing namely bulk material forming. Bulk deformation processes used in practice change the shape of the workpiece by plastic deformations under forces applied by tools and dies.

Findings

Provides information about each source, indicating what can be found there. Listed references contain journal papers, conference proceedings and theses/dissertations on the subject.

Research limitations/implications

It is an exhaustive list of papers (1,693 references are listed) but some papers may be omitted. The emphasis is to present papers written in English language. Sheet material forming processes are not included.

Practical implications

A very useful source of information for theoretical and practical researchers in computational material forming as well as in academia or for those who have recently obtained a position in this field.

Originality/value

There are not many bibliographies published in this field of engineering. This paper offers help to experts and individuals interested in computational analyses and simulations of material forming processes.

Details

Engineering Computations, vol. 23 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 30 September 2013

Upamanyu Banerjee

With an eye to prevent derailment of high-speed trains, vis-à-vis unwarranted loss of lives and property, this paper aims to develop a formalism of designing a suitable control…

Abstract

Purpose

With an eye to prevent derailment of high-speed trains, vis-à-vis unwarranted loss of lives and property, this paper aims to develop a formalism of designing a suitable control system with embedded decision support system.

Design/methodology/approach

A model of rolling contact fatigue (RCF) crack propagation in railway tracks is designed, simulating the alarming stress intensity factor around the advancing fatigue cracks. COMSOL multi-physics software is employed to design the RCF crack monitoring system with acoustic emission (AE) count signals, describing the damage threshold of railway tracks.

Findings

Simulation experiment on stress intensity factor for cracks in real life rail sections has enabled to describe the maximum working stress; it has been noticed that the threshold value of stress intensity factor (∼ 41 MPa m1/2) for the onset of unstable crack propagation is reached at a fatigue crack length of 11.5 mm. It is further noticed that the observed AE count at a particular instant of time in a specific location of railway track is a true indication of the vulnerability of rail failures.

Originality/value

The proposed model, a completely new of its kind, bears a high socio-technological value as it entails the design of an intelligent control system to prevent train accidents.

Details

Multidiscipline Modeling in Materials and Structures, vol. 9 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 14 November 2023

Yayun Qi, Ruian Wang, Xiaolu Cui, Hutang Sang and Wenhui Mao

With the increased speed and mileage of high-speed lines, the problem of rail wear is increasing. In actual operation, a large number of abnormal wear phenomena occur on both…

Abstract

Purpose

With the increased speed and mileage of high-speed lines, the problem of rail wear is increasing. In actual operation, a large number of abnormal wear phenomena occur on both vehicles and rails during fixed line operation; therefore, the purpose of the study is to explored the rail wear for a variety of vehicles running in mixed operation.

Design/methodology/approach

This paper used the universal mechanism multibody dynamics software to establish the CRH2 high speed train (HST) and the CRH3 HST vehicle dynamic models, respectively. The mixed running of HSTs on the effect of rail wear evolution law was analyzed. The rail wear of the two vehicles with different curve radii, different wheel diameters and different under-rail stiffness was compared and analyzed.

Findings

The result showed that the rail wear of CRH3 HST is greater than that of CRH2 HST. The rail wear in the tangent track under mixed operation conditions is 25.4% less than when CRH3 HST operated independently. When there is a 1-mm wheel diameter difference, the maximum rail wear of CRH2 HST and CRH3 HST increases by 263% and 44%, respectively. The amount of rail wear is proportional to the under-rail stiffness, and the position of the maximum wear is almost unchanged.

Originality/value

Most studies on the evolution law of rail wear are conducted for a single vehicle type and a single line. This study explored the mixed running of HSTs on the effect of rail wear evolution law.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-08-2023-0276/

Details

Industrial Lubrication and Tribology, vol. 75 no. 10
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 11 January 2022

Ilesanmi Daniyan, Khumbulani Mpofu and Samuel Nwankwo

The need to examine the integrity of infrastructure in the rail industry in order to improve its reliability and reduce the chances of breakdown due to defects has brought about…

Abstract

Purpose

The need to examine the integrity of infrastructure in the rail industry in order to improve its reliability and reduce the chances of breakdown due to defects has brought about development of an inspection and diagnostic robot.

Design/methodology/approach

In this study, an inspection robot was designed for detecting crack, corrosion, missing clips and wear on rail track facilities. The robot is designed to use infrared and ultrasonic sensors for obstacles avoidance and crack detection, two 3D-profilometer for wear detection as well as cameras with high resolution to capture real time images and colour sensors for corrosion detection. The robot is also designed with cameras placed in front of it with colour sensors at each side to assist in the detection of corrosion in the rail track. The image processing capability of the robot will permit the analysis of the type and depth of the crack and corrosion captured in the track. The computer aided design and modeling of the robot was carried out using the Solidworks software version 2018 while the simulation of the proposed system was carried out in the MATLAB 2020b environment.

Findings

The results obtained present three frameworks for wear, corrosion and missing clips as well as crack detection. In addition, the design data for the development of the integrated robotic system is also presented in the work. The confusion matrix resulting from the simulation of the proposed system indicates significant sensitivity and accuracy of the system to the presence and detection of fault respectively. Hence, the work provides a design framework for detecting and analysing the presence of defects on the rail track.

Practical implications

The development and the implementation of the designed robot will bring about a more proactive way to monitor rail track conditions and detect rail track defects so that effort can be geared towards its restoration before it becomes a major problem thus increasing the rail network capacity and availability.

Originality/value

The novelty of this work is based on the fact that the system is designed to work autonomously to avoid obstacles and check for cracks, missing clips, wear and corrosion in the rail tracks with a system of integrated and coordinated components.

Details

International Journal of Quality & Reliability Management, vol. 40 no. 3
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 8 May 2018

Chenggang Pan, Zizheng Ding, Qingming Chang and Jialin Zhou

Surface defects are often present on the surface of continuous casting slabs and rolled products. A lot of surface defects of hot rolled products are inherited from initial…

Abstract

Purpose

Surface defects are often present on the surface of continuous casting slabs and rolled products. A lot of surface defects of hot rolled products are inherited from initial defects on continuous casting slabs. This work aims to trace the original surface defect during the whole heavy rail rolling and avoid black line surface defect that appears on the surface of heavy rail finial product.

Design/methodology/approach

Artificial round hole-shaped surface defects on the surface of continuous casting slab during the hot rolling of 60 kg/m heavy rail are analyzed experimentally and by means of explicit dynamic finite element method (FEM) and modified model rebuilding method.

Findings

The calculated results of surface defect locations of heavy rail finial product are in good agreement with the experimental ones. It is shown that the explicit dynamic FEM and modified model rebuilding method can be used effectively to predict the flow behavior of surface defects in the hot rolling of 60 kg/m heavy rail.

Originality/value

The three-dimensional finite element model for whole heavy rail rolling is built using explicit dynamic code and modified model rebuilding method. Flow behavior of black lines is studied in the 60-kg/m heavy rail rolling. The simulation results of six typical points are in good agreement with the experimental results.

Details

Engineering Computations, vol. 35 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 20 March 2024

Mauricio Pérez Giraldo, Mauricio Vasquez, Alejandro Toro, Robison Buitrago-Sierra and Juan Felipe Santa

This paper aims to develop a stable gel-type lubricant emulating commercial conditions. This encompassed rheological and tribological assessments, alongside field trials on the…

20

Abstract

Purpose

This paper aims to develop a stable gel-type lubricant emulating commercial conditions. This encompassed rheological and tribological assessments, alongside field trials on the Medellín tram system.

Design/methodology/approach

The gel-type lubricant with graphite and aluminum powder is synthesized. Rheological tests, viscosity measurements and linear viscoelastic regime assessments are conducted. Subsequently, tribological analyses encompassing four-ball and twin disc methods are executed. Finally, real-world testing is performed on the Medellín tram system.

Findings

An achieved lubricant met the stipulated criteria, yielding innovative insights into the interaction of graphite and aluminum powder additives under varying tests.

Originality/value

Novel findings are unveiled regarding the interaction of graphite and aluminum powder additives in tribological, rheological and real-world trials. In addition, the wear behavior of polymers is observed, along with the potential utilization of such additives in tramway systems.

Details

Industrial Lubrication and Tribology, vol. 76 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Open Access
Article
Publication date: 2 November 2023

FengShou Liu, Guang Yang, Zhaoyang Chen, Yinhua Zhang and Qingyue Zhou

The purpose of this paper is to summarize the status and characteristics of rail technology of high-speed railway in China, and point out the development direction of rail…

Abstract

Purpose

The purpose of this paper is to summarize the status and characteristics of rail technology of high-speed railway in China, and point out the development direction of rail technology of high-speed railway.

Design/methodology/approach

This study reviews the evolution of high-speed rail standards in China, comparing their chemical composition, mechanical attributes and geometric specifications with EN standards. It delves into the status of rail production technology, shifts in key performance indicators and the quality characteristics of rails. The analysis further examines the interplay between wheels and rails, the implementation of grinding technology and the techniques for inspecting rail service conditions. It encapsulates the salient features of rail operation and maintenance within the high-speed railway ecosystem. The paper concludes with an insightful prognosis of high-speed railway technology development in China.

Findings

The rail standards of high-speed railway in China are scientific and advanced, highly operational and in line with international standards. The quality and performance of rail in China have reached the world’s advanced level. The 60N profile guarantees the operation quality of wheel–rail interaction effectively. The rail grinding technology system scientifically guarantees the long-term good service performance of the rail. The rail service state detection technology is scientific and efficient. The rail technology will take “more intelligent” and “higher speed” as the development direction to meet the future needs of high-speed railway in China.

Originality/value

The development direction of rail technology for high-speed railway in China is defined, which will promote the continuous innovation and breakthrough of rail technology.

Details

Railway Sciences, vol. 2 no. 4
Type: Research Article
ISSN: 2755-0907

Keywords

Article
Publication date: 24 July 2020

Luiz Henrique Dias Alves, Tiago Carvalho Tepedino, Mohammad Masoumi, Gustavo Tressia and Helio Goldenstein

The purpose of this paper is to present the results of a metallurgical, mechanical and tribological characterization of the weld and heat-affected zone (HAZ) of aluminothermic…

Abstract

Purpose

The purpose of this paper is to present the results of a metallurgical, mechanical and tribological characterization of the weld and heat-affected zone (HAZ) of aluminothermic welding of premium rails used in heavy haul, looking into the origins of the squat defects associated with rail wear.

Design/methodology/approach

A full factorial design of experiment was carried out for 24 welds of premium and super premium rails. The factors studied were chemical composition, welding gap and preheating time. The welds were inspected visually and by ultrasound to detect superficial and internal defects and characterized by macrographic analysis, hardness profile, tensile tests and microstructural characterization in scanning electronic microscopy. Pin-on-disk test were carried out to compare the tribological behavior of the different regions of the weld rail.

Findings

Squat formation was shown to be associated with spheroidized pearlite regions formed on the HAZ of the welds, presenting near half the hardness of the weld metal. Thermal analysis showed that spheroidized pearlite is a result of partial austenitization at these positions. Tribological tests showed that low hardness regions presented smaller wear resistance than both the weld metal and the parent rail. Tensile test of the whole region resulted in brittle fracture along the weld metal.

Originality/value

The results showed that it is essential to reduce the dimensions of the HAZ and the width of the hardness drop area to mitigate squat formation in the HAZ edges.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-01-2020-0020/

Details

Industrial Lubrication and Tribology, vol. 72 no. 9
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 13 October 2022

Xianghong Fan and Yuting He

The flexible eddy current array sensor has the characteristics of lightweight and flexibility, which has a great application prospect in the field of fatigue crack monitoring. But…

59

Abstract

Purpose

The flexible eddy current array sensor has the characteristics of lightweight and flexibility, which has a great application prospect in the field of fatigue crack monitoring. But the exciting layout and feature signal extraction have a great influence on the crack monitoring characteristics of the sensor. This paper aims to propose a method using crack disturbed voltage as sensitivity to characterize crack propagation.

Design/methodology/approach

Flexible eddy current array sensors with reverse and codirectional exciting layout are proposed, and the advantages and disadvantages of three characterization methods based on the change of trans-impedance amplitude, the change of the trans-impedance’s real and imaginary part and the crack disturbed voltage are compared and analyzed by finite element simulation. Finally, the fatigue crack monitoring experiment is carried out.

Findings

The crack disturbed voltage and the change of trans-impedance’s imaginary part can effectively characterize the crack propagation for sensors with different exciting layouts. The codirectional exciting layout sensor has better crack identification sensitivity than the reverse exciting layout sensor, especially the induction coil 2. When the distance between the exciting coil and the induction coil is 0.1, 0.2 and 0.3 mm, it is increased by 372.09%, 295.24% and 231.43%, respectively.

Originality/value

Crack disturbed voltage can effectively characterize the crack propagation for sensors with two different exciting layouts.

Article
Publication date: 12 September 2023

Min Zhan, Yajun Dai, Chang Liu, Xiangyu Wang, Lang Li, Yongjie Liu, Chao He and Qingyuan Wang

The purpose of this paper is to determine (1) the relationship between microstructure and fatigue cracking behavior and (2) effect of rolling on the process of crack initiation…

Abstract

Purpose

The purpose of this paper is to determine (1) the relationship between microstructure and fatigue cracking behavior and (2) effect of rolling on the process of crack initiation and propagation in FeCrAl alloys.

Design/methodology/approach

The qualitative and quantitative fracture studies were performed using scanning electron microscopy and the non-contact optical measurement system (IFMG5).

Findings

The results show that the formation of facets, rough facets and parallel stripes in the crack initiation and early crack propagation zones are closely related to the sensitivity of crack behavior to the microstructure of the material. Besides, the rolling process has a significant influence on the small crack initiation and propagation behavior. Quantitative analysis demonstrates that the size of the stress intensity factor and plastic zone size in the rough zone is associated with the rolling process.

Originality/value

The findings of this study have the potential to enhance the understanding of the microstructural crack formation mechanisms in FeCrAl alloys and shed light on the impact of rolling on the long-term and ultra-long fatigue behavior of these alloys. This new knowledge is vital for improving manufacturing processes and ensuring the safety and reliability of FeCrAl alloys used in nuclear industry applications.

Details

International Journal of Structural Integrity, vol. 14 no. 5
Type: Research Article
ISSN: 1757-9864

Keywords

1 – 10 of 596