Search results

1 – 10 of 26
Article
Publication date: 5 October 2022

Alok Kumar Mishra, Urvashi Chopra, Vaithiyanathan D. and Baljit Kaur

A low power flip-flop circuit is designed for energy-efficient devices. Digital sequential circuits are in huge demand because every processor has most of the parts of digital…

Abstract

Purpose

A low power flip-flop circuit is designed for energy-efficient devices. Digital sequential circuits are in huge demand because every processor has most of the parts of digital circuit. The sequential circuits consist of a basic data storing element, a latch is used to store single bit data. The flip-flop takes a sufficient portion of the total chip area and overall power consumption as well. This study aims to the low power energy-efficient applications like laptops, mobile phones and palmtops.

Design/methodology/approach

This paper proposes a new type of flip-flop that consists of the only 16 transistors with a single-phase clock. The flip-flop has two blocks, master and slave latch. In this design, the authors have focused on only master latch, which includes a level restoring circuit. It is used to help the master latch in data retention process. The latch circuit has two inverters in back-to-back arrangement. The proposed flip-flop is implemented on 65 nm complementary metal oxide semiconductor technology using Cadence Virtuoso environment and compared with other reported flip-flops.

Findings

The proposed flip-flop architecture outperformed the peak percentage, i.e. 79.25% as compared to transmission gate flip-flop and a minimum of 20.02% compared to 18 T true single phase clocking (TSPC) improvement in terms of power. It also improved C to Q delay and power delay product. In addition, by reducing the number of transistors the total area of the proposed flip-flop is reduced by a minimum of 13.76% with respect to 18TSPC and existing flip-flop. For reliability checking the Monte Carlo simulation is performed for thousand samples and it is compared with the recently reported 18TSPC flip-flop.

Originality/value

This work is tested by using a test circuit with a load capacitor of 0.2 fF. The proposed work uses a new topology to work as master-slave. Power consumption of this technique is very less and it is best suitable for low power applications. This circuit is working properly up to 2 GHz frequency.

Details

Circuit World, vol. 50 no. 2/3
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 16 July 2024

Mahmoud Afshari, Mehrdad Khandaei, Reza Shoja Razavi and Seyed Masoud Barekat

The net power delivered to the surface of parts (i.e. the actual heat flux) is a key parameter in the laser melting process and its exact control has a great impact on the…

Abstract

Purpose

The net power delivered to the surface of parts (i.e. the actual heat flux) is a key parameter in the laser melting process and its exact control has a great impact on the numerical solutions. In this paper, the impact of laser additive manufacturing parameters including laser power, scanning speed and powder injection rate on thermal efficiency, net power delivered to the part and power loss due to powder flow has been investigated.

Design/methodology/approach

The response surface method was applied to measure the net laser power in laser deposited Inconel 718 using k-type thermocouples. The temperature history obtained by thermocouples was used to calculate the net power delivered by inverse analysis method. The applied model is Rosenthal's optimized model, in which all the thermal properties of the material are considered to vary with temperature.

Findings

The results indicated that the thermal efficiency, power delivered to the part and power loss can be optimized simultaneously at laser power of 400 W, scanning speed of 2 mm/s and powder injection rate of 200 mg/s. The microstructure analysis indicated that a high-quality sample without microstructural defects was formed under optimal condition of parameters. Moreover, the primary dendrite arm spacing for the optimal sample was higher than that obtained for other samples.

Originality/value

The novelty of this research summarized as follows: Prediction of the thermal efficiency and power loss during the laser metal deposition of Inconel 718 superalloy using the inverse analysis. Finding the optimal values of thermal efficiency, power delivered to the surface and power loss in the laser metal deposition of Inconel 718 superalloy. Investigating the effect of laser power, powder injection rate and scanning speed on the thermal efficiency and power loss of Inconel 718 superalloy during the laser metal deposition.

Details

Rapid Prototyping Journal, vol. 30 no. 7
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 27 November 2023

Maha Assad, Rami Hawileh, Ghada Karaki, Jamal Abdalla and M.Z. Naser

This research paper aims to investigate reinforced concrete (RC) walls' behaviour under fire and identify the thermal and mechanical factors that affect their performance.

Abstract

Purpose

This research paper aims to investigate reinforced concrete (RC) walls' behaviour under fire and identify the thermal and mechanical factors that affect their performance.

Design/methodology/approach

A three-dimensional (3D) finite element (FE) model is developed to predict the response of RC walls under fire and is validated through experimental tests on RC wall specimens subjected to fire conditions. The numerical model incorporates temperature-dependent properties of the constituent materials. Moreover, the validated model was used in a parametric study to inspect the effect of the fire scenario, reinforcement concrete cover, reinforcement ratio and configuration, and wall thickness on the thermal and structural behaviour of the walls subjected to fire.

Findings

The developed 3D FE model successfully predicted the response of experimentally tested RC walls under fire conditions. Results showed that the fire resistance of the walls was highly compromised under hydrocarbon fire. In addition, the minimum wall thickness specified by EC2 may not be sufficient to achieve the desired fire resistance under considered fire scenarios.

Originality/value

There is limited research on the performance of RC walls exposed to fire scenarios. The study contributed to the current state-of-the-art research on the behaviour of RC walls of different concrete types exposed to fire loading, and it also identified the factors affecting the fire resistance of RC walls. This guides the consideration and optimisation of design parameters to improve RC walls performance in the event of a fire.

Details

Journal of Structural Fire Engineering, vol. 15 no. 3
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 20 June 2024

Dian Wang, Chuanjin Huang, Ning Hu and Qiang Wei

The purpose of this paper is to clarify the influence of low earth orbit space environment on the wear mechanism of TC4 alloy material and crank rocker mechanism.

Abstract

Purpose

The purpose of this paper is to clarify the influence of low earth orbit space environment on the wear mechanism of TC4 alloy material and crank rocker mechanism.

Design/methodology/approach

In this study, friction experiments were carried out on TC4 alloy friction discs and crank rocker mechanisms, both before and after exposure to atomic oxygen and proton irradiation. Nanoindentation, grazing incidence X-ray diffraction (GIXRD), and X-ray photoelectron spectroscopy were employed to systematically characterize alterations in mechanical properties, surface phase, and chemical composition.

Findings

The results show that the wear mechanism of TC4 alloy friction disc is mainly adhesive wear in vacuum environment, while the wear mechanism of crank rocker mechanism includes not only adhesive wear but also abrasive wear. Atomic oxygen exposure leads to the formation of more oxides on the surface of TC4 alloy, which form abrasive particles during the friction process. Proton irradiation will lead to a decrease in fatigue performance and an increase in hardness on the surface of TC4 alloy, thus causing fatigue wear on the surface of TC4 alloy, and more furrows appear on the crank rocker mechanism after proton irradiation. In the three environments, the characteristics of abrasive wear of the crank rocker mechanism are more obvious than those of the TC4 alloy friction disc.

Originality/value

These results highlight the importance of understanding the subtle effects of atomic oxygen and proton irradiation on the wear behavior of TC4 alloy and provide some insights for optimizing its performance in space applications.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-02-2024-0051/

Details

Industrial Lubrication and Tribology, vol. 76 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 9 February 2024

Rizk Mostafa Shalaby and Mohamed Saad

The purpose of the present work is to study the impacts of rapid cooling and Tb rare-earth additions on the structural, thermal and mechanical behavior of Bi–0.5Ag lead-free…

Abstract

Purpose

The purpose of the present work is to study the impacts of rapid cooling and Tb rare-earth additions on the structural, thermal and mechanical behavior of Bi–0.5Ag lead-free solder for high-temperature applications.

Design/methodology/approach

Effect of rapid solidification processing on structural, thermal and mechanical properties of Bi-Ag lead-free solder reinforced Tb rare-earth element.

Findings

The obtained results indicated that the microstructure consists of rhombohedral Bi-rich phase and Ag99.5Bi0.5 intermetallic compound (IMC). The addition of Tb could effectively reduce the onset and melting point. The elastic modulus of Tb-containing solders was enhanced to about 90% at 0.5 Tb. The higher elastic modulus may be attributed to solid solution strengthening effect, solubility extension, microstructure refinement and precipitation hardening of uniform distribution Ag99.5Bi0.5 IMC particles which can reasonably modify the microstructure, as well as inhibit the segregation and hinder the motion of dislocations.

Originality/value

It is recommended that the lead-free Bi-0.5Ag-0.5Tb solder be a candidate instead of common solder alloy (Sn-37Pb) for high temperature and high performance applications.

Details

Soldering & Surface Mount Technology, vol. 36 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 12 July 2024

María Higueras, Ana Carrasco-Huertas, Ana Isabel Calero-Castillo, Manuel Moreno Alcaide and Francisco José Collado Montero

This paper aims to study the suitability of a selection of 3D printing liquid photopolymer resins for their application in the cultural heritage context.

Abstract

Purpose

This paper aims to study the suitability of a selection of 3D printing liquid photopolymer resins for their application in the cultural heritage context.

Design/methodology/approach

The main concerns regarding the conservation and restoration of cultural assets are the chemical composition and long-term behavior of the new materials that will be in contact with the original object. Because of this, four different LED curing resins were exposed to an accelerated aging procedure and tested to identify the materials which demonstrated a better result. Some specific properties of the material (color, glossiness, pH and volatile organic compound emissions) were measured before and after the exposure.

Findings

Some of the properties measured reported good results demonstrating a decent stability against the selected aging conditions. The main changes were produced in the colorimetric aspect, probably indicating other chemical reactions in the material. Likewise, a case study could be also executed to demonstrate the usefulness of these materials in the cultural field.

Research limitations/implications

It is necessary to study in more detail the long-lasting behavior of the materials employed with these technologies. Further analysis should be carried out highlighting the chemical composition and degradation process of the materials proposed.

Originality/value

This paper contributes to the introduction of curing 3D printing resins in the restoration methodologies of cultural assets. For this, the study of a selection of properties represents the first stage to suggest or reject their use.

Details

Rapid Prototyping Journal, vol. 30 no. 7
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 15 August 2024

Susheel Pandey, Rajeev Srivastava, Christ Prakash Paul, Arun Kumar Rai and Rakesh Narain

The aim of this paper is to study the effect of laser shock peening (LSP) on mechanical behaviour of the laser-directed energy deposition (LDED)-based printed 15-5 PH stainless…

Abstract

Purpose

The aim of this paper is to study the effect of laser shock peening (LSP) on mechanical behaviour of the laser-directed energy deposition (LDED)-based printed 15-5 PH stainless steel with U and V notches. The study specifically concentrates on the evaluation of effect of scan strategy, machining and LSP processing on microstructural, texture evolution and fatigue behaviour of LDED-printed 15-5 PH steel.

Design/methodology/approach

For LSP treatment, 15-5 PH steel was printed using LDED process with bidirectional scanning strategy (XX [θ = 0°) and XY [θ = 90°]) at optimised laser power of 600 W with a scanning speed of 300 mm/min and a powder feed rate of 3 g/min. Furthermore, LSP treatment was conducted on the V- and U-notched fatigue specimens extracted from LDED-built samples at laser energy of 3.5 J with a pulse width of 10 ns using laser spot diameter of 3 mm. Post to the LSP treatment, the surface roughness, fatigue life assessment and microstructural evolution analysis is performed. For this, different advanced characterisation techniques are used, such as scanning electron microscopy attached with electron backscatter diffraction for microstructure and texture, X-ray diffraction for residual stress (RS) and structure information, Vicker’s hardness tester for microhardness and universal testing machine for low-cycle fatigue.

Findings

It is observed that both scanning strategies during the LDED printing of 15-5 PH steel and laser peening have played significant role in fatigue life. Specimens with the XY printing strategy shows higher fatigue life as compared to XX with both U- and V-notched conditions. Furthermore, machining and LSP treatment led to a significant improvement of fatigue life for both scanning strategies with U and V notches. The extent of increase in fatigue life for both XX and XY scanning strategy with V notch is found to be higher than U notch after LSP treatment, though without LSP samples with U notch have a higher fatigue life. As fabricated sample is found to have the lowest fatigue life as compared to machines and laser peened with both scan strategies.

Originality/value

This study presents an innovative method to improve the fatigue life of 15-5 PH stainless steel by changing the microstructure, texture and RS with the adoption of a suitable scanning strategy, machining and LSP treatment as post-processing. The combination of preferred microstructure and compressive RS in LDED-printed 15-5 PH stainless steel achieved with a synergy between microstructure and RS, which is responsible to improve the fatigue life. This can be adopted for the futuristic application of LDED-printed 15-5 PH stainless steel for different applications in aerospace and other industries.

Graphical abstract

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 24 November 2022

Youssef L. Nashed, Fouad Zahran, Mohamed Adel Youssef, Manal G. Mohamed and Azza M. Mazrouaa

The purpose of this study is to examine how well reinforced concrete structures can be shielded against concrete carbonation using anti-carbonation coatings based on synthetic…

Abstract

Purpose

The purpose of this study is to examine how well reinforced concrete structures can be shielded against concrete carbonation using anti-carbonation coatings based on synthetic polymer.

Design/methodology/approach

Applying free radical polymerization, an acrylate terpolymer emulsion that a surfactant had stabilized was created. A thermogravimetric analysis, minimum film-forming temperature, Fourier transform infrared spectroscopy and particle size distribution are used to characterize the prepared eco-friendly water base acrylate terpolymer emulsion. Using three different percentages of the acrylate terpolymer emulsion produced, 35%, 45% and 55%, the anti-carbonation coating was formed. Tensile strength, tensile strain, elongation, crack-bridging ability, carbon dioxide permeability, chloride ion diffusion, average pull-off adhesion strength, water vapor transmission, gloss, wet scrub resistance, QUV/weathering and storage stability are the characteristics of the anti-carbonation coating.

Findings

The formulated acrylate terpolymer emulsion enhances anti-carbonation coating performance in CO2 permeability, Cl-diffusion, crack bridging, pull-off adhesion strength and water vapor transmission. The formed coating based on the formulated acrylate terpolymer emulsion performed better than its commercial counterpart.

Practical implications

To protect the steel embedded in concrete from corrosion and increase the life span of concrete, the surface of cement is treated with an anti-carbonation coating based on synthetic acrylate terpolymer emulsion.

Social implications

In addition to saving lives from building collapse, it maintains the infrastructure for the long run.

Originality/value

The anti-carbonation coating, which is based on the synthetic acrylate terpolymer emulsion, is environmentally benign and stops the entry of carbon dioxide and chlorides, which are the main causes of steel corrosion in concrete.

Details

Pigment & Resin Technology, vol. 53 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 24 April 2024

Shahriar Abubakri, Pritpal S. Mangat, Konstantinos Grigoriadis and Vincenzo Starinieri

Microwave curing (MC) can facilitate rapid concrete repair in cold climates without using conventional accelerated curing technologies which are environmentally unsustainable…

Abstract

Purpose

Microwave curing (MC) can facilitate rapid concrete repair in cold climates without using conventional accelerated curing technologies which are environmentally unsustainable. Accelerated curing of concrete under MC can contribute to the decarbonisation of the environment and provide economies in construction in several ways such as reducing construction time, energy efficiency, lower cement content, lower carbonation risk and reducing emissions from equipment.

Design/methodology/approach

The paper investigates moisture loss and pore properties of six cement-based proprietary concrete repair materials subjected to MC. The impact of MC on these properties is critically important for its successful implementation in practice and current literature lacks this information. Specimens were microwave cured for 40–45 min to surface temperatures between 39.9 and 44.1 °C. The fast-setting repair material was microwave cured for 15 min to 40.7 °C. MC causes a higher water loss which shows the importance of preventing drying during MC and the following 24 h.

Findings

Portland cement-based normal density repair mortars, including materials incorporating pfa and polymer latex, benefit from the thermal effect of MC on hydration, resulting in up to 24% reduction in porosity relative to normal curing. Low density and flowing repair materials suffer an increase in porosity up to 16% due to MC. The moisture loss at the end of MC and after 24h is related to the mix water content and porosity, respectively.

Originality/value

The research on the application of MC for rapid repair of concrete is original. The research was funded by the European commission following a very rigorous and competitive review process which ensured its originality. Original data on the parameters of porosity and moisture loss under MC are provided for different generic cementitious repair materials which have not been studied before. Application of MC to concrete construction especially in cold climates will provide environmental, economic and energy benefits.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 8 May 2024

Vishal Kumar and Amitava Mandal

Wire-arc-based additive manufacturing (WAAM) is a promising technology for the efficient and economical fabrication of medium-large components. However, the anisotropic behavior…

Abstract

Purpose

Wire-arc-based additive manufacturing (WAAM) is a promising technology for the efficient and economical fabrication of medium-large components. However, the anisotropic behavior of the multilayered WAAM-fabricated components remains a challenging problem.

Design/methodology/approach

The purpose of this paper is to conduct a comprehensive study of the grain morphology, crystallographic orientation and texture in three regions of the WAAM printed component. Furthermore, the interdependence of the grain morphology in different regions of the fabricated component with their mechanical and tribological properties was established.

Findings

The electron back-scattered diffraction analysis of the top and bottom regions revealed fine recrystallized grains, whereas the middle regions acquired columnar grains with an average size of approximately 8.980 µm. The analysis revealed a higher misorientation angle and an intense crystallographic texture in the upper and lower regions. The investigations found a higher microhardness value of 168.93 ± 1.71 HV with superior wear resistance in the bottom region. The quantitative evaluation of the residual stress detected higher compressive stress in the upper regions. Evidence for comparable ultimate tensile strength and greater elongation (%) compared to its wrought counterpart has been observed.

Originality/value

The study found a good correlation between the grain morphology in different regions of the WAAM-fabricated component and their mechanical and wear properties. The Hall–Petch relationship also established good agreement between the grain morphology and tensile test results. Improved ductility compared to its wrought counterpart was observed. The anisotropy exists with improved mechanical properties along the longitudinal direction. Moreover, cylindrical components have superior tribological properties compared with cuboidal components.

Details

Rapid Prototyping Journal, vol. 30 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of 26