Search results

1 – 10 of over 2000
Article
Publication date: 18 January 2008

Xinhong Xiong, Zhang Haiou and Wang Guilan

The purpose of this paper is to develop a novel hybrid plasma deposition and milling (HPDM). For solving the bottleneck problem of low‐surface quality in existing direct rapid…

1595

Abstract

Purpose

The purpose of this paper is to develop a novel hybrid plasma deposition and milling (HPDM). For solving the bottleneck problem of low‐surface quality in existing direct rapid metal prototyping technologies.

Design/methodology/approach

HPDM uses plasma deposition as an additive and conventional milling as subtractive technique, which synthesizes the advantages of both processes. Compared to other laser or electron beam deposition processes, plasma deposition used in HPDM is one of the most economic ways of depositing metals, CNC assisted to ensure the precision of the manufactured parts simultaneity.

Findings

This paper focus on the experimental investigation to find the basic process characteristics, the optimization of the process parameters such as transferred arc current, workpiece's speed, powder flow rate and feed per tooth using a statistical approach. Some metal parts, for instance, metal torsional vane, are then trial‐manufactured.

Research limitations/implications

The manufacturing cycle of HPDM is longer than simplex direct metal rapid prototyping, and the surface accuracy should be further investigated.

Practical implications

HPDM is a very useful and effective method to manufacture metal parts with fine surface state directly.

Originality/value

This paper describes a novel process and manufacturing system for fabrication metal prototyping direct, which can improve the inside and outside quality of the metal rapid prototypes.

Details

Rapid Prototyping Journal, vol. 14 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 30 September 2013

Haiou Zhang, Xiangping Wang, Guilan Wang and Yang Zhang

The purpose of this paper is to report a new direct metal manufacturing method which integrates freeform deposition process and micro rolling process, introduce the manufacturing…

1842

Abstract

Purpose

The purpose of this paper is to report a new direct metal manufacturing method which integrates freeform deposition process and micro rolling process, introduce the manufacturing principle and show the advantages of this method.

Design/methodology/approach

This paper introduces the hybrid manufacturing principle and devices first. Then, the key parameters of hybrid manufacturing process are studied by contrast experiments. The results of comparisons of manufacturing accuracy, microstructure and tensile test between freeform fabricated parts and hybrid manufactured parts show the advantages of this new direct manufacturing method.

Findings

The experiments results show that the accuracy of hybrid manufacturing method is improved obviously comparing with arc-based freeform deposition manufacturing method; the microstructure of the hybrid manufacturing part turns into cellular crystal instead of dendrite; the tensile strength of the part increases by 33 percent and the tensile deformation improved more than two times.

Originality/value

The paper presents a new hybrid direct metal manufacturing method for the first time. The hybrid manufacturing devices are developed. The experiments results show that the hybrid manufacturing method can be used on directly fabricating large metal components with outstanding quality, efficiency and low cost. The application prospect is great.

Details

Rapid Prototyping Journal, vol. 19 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 7 August 2007

Frank Liou, Kevin Slattery, Mary Kinsella, Joseph Newkirk, Hsin‐Nan Chou and Robert Landers

This paper sets out to summarize the current research, development, and integration of a hybrid process to produce high‐temperature metallic materials. It seeks to present the…

3387

Abstract

Purpose

This paper sets out to summarize the current research, development, and integration of a hybrid process to produce high‐temperature metallic materials. It seeks to present the issues and solutions, including the understanding of the direct laser deposition process, and automated process planning.

Design/methodology/approach

Research in simulation and modeling, process development, integration, and actual part building for hybrid processing are discussed.

Findings

Coupling additive and subtractive processes into a single workstation, the integrated process, or hybrid process, can produce metal parts with machining accuracy and surface finish. Therefore, the hybrid process is potentially a very competitive process to fabricate metallic structures.

Originality/value

Rapid prototyping technology has been of interest to various industries that are looking for a process to produce/build a part directly from a CAD model in a short time. Among them, the direct laser deposition process is one of the few processes which directly manufacture a fully dense metal part without intermediate steps. Presented in this paper is the research, development, and system integration to resolve the challenges of the direct metal deposition process including building overhang structures, producing precision surfaces, and making parts with complex structures.

Details

Rapid Prototyping Journal, vol. 13 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 18 November 2021

Liaoyuan Chen, Tianbiao Yu, Ying Chen and Wanshan Wang

The purpose of this paper is to improve the dimensional accuracy of inclined thin-walled parts fabricated by laser direct metal deposition (DMD) under an open-loop control system.

Abstract

Purpose

The purpose of this paper is to improve the dimensional accuracy of inclined thin-walled parts fabricated by laser direct metal deposition (DMD) under an open-loop control system.

Design/methodology/approach

In this study, a novel method of the adaptive slicing method and DMD process with feedback adjustment of deposition height has been developed to successively fabricate complex inclined thin-walled square tube elbow parts. The defocus amount was used as a variable to the matching between the deposition thickness and the adaptive slicing height.

Findings

The low relative error of dimensional accuracy between experimental and designed parts shows that the matching of the single-layer deposition thickness and the adaptive slicing height can be realized by optimizing the defocusing amount. The negative feedback of the thin-wall part height can be achieved when the defocus amount and the z-axis increment are less than deposition thickness. The improvement of dimensional accuracy of inclined thin-walled parts is also attributed to the optimized scanning strategy.

Practical implications

The slicing method and deposition process can provide technical guidance for other additive manufacturing (AM) systems to fabricate metal thin-walled parts with high dimensional accuracy because the feedback control of deposition height can be realized only by the optimized process.

Originality/value

This study provides a novel adaptive slice method and corresponding the deposition process, and expands the slicing method of AM metal parts.

Article
Publication date: 15 May 2009

J.H.‐G. Ng, M.P.Y. Desmulliez, M. Lamponi, B.G. Moffat, A. McCarthy, H. Suyal, A.C. Walker, K.A. Prior and D.P. Hand

The purpose of this paper is to present a novel manufacturing process that aims to pattern metal tracks onto polyimide at atmospheric pressure and ambient environment. The process…

Abstract

Purpose

The purpose of this paper is to present a novel manufacturing process that aims to pattern metal tracks onto polyimide at atmospheric pressure and ambient environment. The process can be scaled up for industrial applications.

Design/methodology/approach

From a thorough literature survey, different approaches were carried out for processing polyimide. Following a design of experiments for the processing and various characterisation techniques, a micro‐coil was manufactured as a test demonstrator.

Findings

The characteristics of some main formaldehyde‐based electroless copper baths were compared. The quality of the sidewalls was characterised and the performance of the process was assessed.

Originality/value

This paper demonstrates a high‐value manufacturing technique that is mass manufacturable, low cost and suitable for use on 3D surfaces. Criteria required for the development of a direct‐writing process have been described. The issues surrounding electroless plating on polyimide have been explained.

Details

Circuit World, vol. 35 no. 2
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 21 March 2016

A.R. Vinod, C.K. Srinivasa, R. Keshavamurthy and P.V. Shashikumar

This paper aims to focus on reducing lead-time and energy consumption for laser-based metal deposition of Inconel-625 superalloy and to investigate the effect of process…

Abstract

Purpose

This paper aims to focus on reducing lead-time and energy consumption for laser-based metal deposition of Inconel-625 superalloy and to investigate the effect of process parameters on microstructure, density, surface roughness, dimensional accuracy and microhardness.

Design/methodology/approach

Inconel material was deposited on steel substrate by varying process parameters such as laser power, laser scan speed and powder flow rate. The deposited parts were characterized for their density, surface roughness, dimensional accuracy and microhardness.

Findings

The study reveals that with increase in laser power, laser scan speed and powder flow rate, there was an increase in density, surface roughness values and microhardness of the deposits, while there was a decrease in dimensional accuracy, deposition time and energy consumption.

Practical implications

The results of this study can be useful in fabrication of Inconel components by laser-based metal deposition process, and the methodology can be expanded to other materials to reduce the lead-time and energy consumption effectively.

Originality/value

The present study gives an understanding of effect of process parameters on density, surface roughness, dimensional accuracy, microhardness, deposition time and energy consumption for laser-based metal deposition of Inconel-625.

Details

Rapid Prototyping Journal, vol. 22 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 18 April 2017

Yongze Yu, Fujun Liu and Jing Liu

This paper aims to propose a method that can directly print low-melting-point alloy In61Bi26Sn9Ga4 into a variety of macroscopic 3D structures at room temperature via adhesion…

Abstract

Purpose

This paper aims to propose a method that can directly print low-melting-point alloy In61Bi26Sn9Ga4 into a variety of macroscopic 3D structures at room temperature via adhesion mechanism.

Design/methodology/approach

In the first section, the principle of the direct printing system is described. As process parameters and material properties have both geometric and physical significance to printing, the approach the authors take is to study the relationships between key parameters and ultimate printed dimension. The surface tension of the fusible alloy is measured under different temperature ranges.

Findings

The interaction between the initial standoff distance and the geometry of the first layer is critically important for the adhesion of the liquid metal to the substrate and metal deposition. The characterization of the layer stacking in the direct printing process, stability ranges of the layer thickness and printing speed are also demonstrated. The direct printing system is suitable for making 3D structures with low-melting-point alloy under the summarized range of printing conditions.

Social implications

This study may arouse big public attention among society.

Originality/value

This study shows possibilities of manufacturing macroscopic 3D metal objects by continuously depositing molten alloy with low viscosity and high surface tension around room temperature. This study provides a supplement to realize compound printing with metal and nonmetal materials together for building terminal functional devices in a low cost and efficient way.

Details

Rapid Prototyping Journal, vol. 23 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 12 March 2020

Shekhar Srivastava, Rajiv Kumar Garg, Vishal S. Sharma, Noe Gaudencio Alba-Baena, Anish Sachdeva, Ramesh Chand and Sehijpal Singh

This paper aims to present a systematic approach in the literature survey related to metal additive manufacturing (AM) processes and its multi-physics continuum modelling approach…

Abstract

Purpose

This paper aims to present a systematic approach in the literature survey related to metal additive manufacturing (AM) processes and its multi-physics continuum modelling approach for its better understanding.

Design/methodology/approach

A systematic review of the literature available in the area of continuum modelling practices adopted for the powder bed fusion (PBF) AM processes for the deposition of powder layer over the substrate along with quantification of residual stress and distortion. Discrete element method (DEM) and finite element method (FEM) approaches have been reviewed for the deposition of powder layer and thermo-mechanical modelling, respectively. Further, thermo-mechanical modelling adopted for the PBF AM process have been discussed in detail with its constituents. Finally, on the basis of prediction through thermo-mechanical models and experimental validation, distortion mitigation/minimisation techniques applied in PBF AM processes have been reviewed to provide a future direction in the field.

Findings

The findings of this paper are the future directions for the implementation and modification of the continuum modelling approaches applied to PBF AM processes. On the basis of the extensive review in the domain, gaps are recommended for future work for the betterment of modelling approach.

Research limitations/implications

This paper is limited to review only the modelling approach adopted by the PBF AM processes, i.e. modelling techniques (DEM approach) used for the deposition of powder layer and macro-models at process scale for the prediction of residual stress and distortion in the component. Modelling of microstructure and grain growth has not been included in this paper.

Originality/value

This paper presents an extensive review of the FEM approach adopted for the prediction of residual stress and distortion in the PBF AM processes which sets the platform for the development of distortion mitigation techniques. An extensive review of distortion mitigation techniques has been presented in the last section of the paper, which has not been reviewed yet.

Article
Publication date: 6 December 2019

Muhammad Omar Shaikh, Ching-Chia Chen, Hua-Cheng Chiang, Ji-Rong Chen, Yi-Chin Chou, Tsung-Yuan Kuo, Kei Ameyama and Cheng-Hsin Chuang

Using wire as feedstock has several advantages for additive manufacturing (AM) of metal components, which include high deposition rates, efficient material use and low material…

Abstract

Purpose

Using wire as feedstock has several advantages for additive manufacturing (AM) of metal components, which include high deposition rates, efficient material use and low material costs. While the feasibility of wire-feed AM has been demonstrated, the accuracy and surface finish of the produced parts is generally lower than those obtained using powder-bed/-feed AM. The purpose of this study was to develop and investigate the feasibility of a fine wire-based laser metal deposition (FW-LMD) process for producing high-precision metal components with improved resolution, dimensional accuracy and surface finish.

Design/methodology/approach

The proposed FW-LMD AM process uses a fine stainless steel wire with a diameter of 100 µm as the additive material and a pulsed Nd:YAG laser as the heat source. The pulsed laser beam generates a melt pool on the substrate into which the fine wire is fed, and upon moving the X–Y stage, a single-pass weld bead is created during solidification that can be laterally and vertically stacked to create a 3D metal component. Process parameters including laser power, pulse duration and stage speed were optimized for the single-pass weld bead. The effect of lateral overlap was studied to ensure low surface roughness of the first layer onto which subsequent layers can be deposited. Multi-layer deposition was also performed and the resulting cross-sectional morphology, microhardness, phase formation, grain growth and tensile strength have been investigated.

Findings

An optimized lateral overlap of about 60-70% results in an average surface roughness of 8-16 µm along all printed directions of the X–Y stage. The single-layer thickness and dimensional accuracy of the proposed FW-LMD process was about 40-80 µm and ±30 µm, respectively. A dense cross-sectional morphology was observed for the multilayer stacking without any visible voids, pores or defects present between the layers. X-ray diffraction confirmed a majority austenite phase with small ferrite phase formation that occurs at the junction of the vertically stacked beads, as confirmed by the electron backscatter diffraction (EBSD) analysis. Tensile tests were performed and an ultimate tensile strength of about 700-750 MPa was observed for all samples. Furthermore, multilayer printing of different shapes with improved surface finish and thin-walled and inclined metal structures with a minimum achievable resolution of about 500 µm was presented.

Originality/value

To the best of the authors’ knowledge, this is the first study to report a directed energy deposition process using a fine metal wire with a diameter of 100 µm and can be a possible solution to improving surface finish and reducing the “stair-stepping” effect that is generally observed for wires with a larger diameter. The AM process proposed in this study can be an attractive alternative for 3D printing of high-precision metal components and can find application for rapid prototyping in a range of industries such as medical and automotive, among others.

Details

Rapid Prototyping Journal, vol. 26 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 28 September 2018

Bo Chen, Yuhua Huang, Tao Gu, Caiwang Tan and Jicai Feng

Additive manufacturing is a fabrication technology with flexibility and economy. 18Ni300 is one of maraging steels with ultra-high strength, superior toughness, so it is an…

Abstract

Purpose

Additive manufacturing is a fabrication technology with flexibility and economy. 18Ni300 is one of maraging steels with ultra-high strength, superior toughness, so it is an excellent candidate of structural material. This paper aims to explore the feasibility of using direct laser metal deposition method to fabricate18Ni300, and the evolution of its microstructure and defects is studied.

Design/methodology/approach

The experiments were conceived from single-trace-single-layer (STSL) test to multi-trace-multi-layers (MTML) test via single-trace-multi-layers (STML) test. The microstructure, defects and mechanical properties were analyzed.

Findings

The STML results showed that the columnar/equiaxed transformation occurred at the top part and the grain size increased with the layer number increasing, and it was explained by an innovative attempt combining columnar/equiaxed transformation model and the change of grain size. The MTML test with the interlayer orthogonal parallel reciprocating scanning pattern resulted in the grain growing along orthogonal directions; with the increase of overlap rate, the length and the area of the columnar grain decreased. What is more, the later deposition layer had lower micro-hardness value because of heat history.

Originality/value

Direct laser metal deposition method was a novel additive manufacturing method to manufacture 18Ni300 components, as 18Ni300 maraging steel was mainly manufactured by selective laser melting (SLM) method nowadays. It was useful to manufacture maraging steel parts using direct laser deposition method because it could manufacture larger parts than SLM method. Influence of processing parameters on forming quality and microstructure evolution was studied. The findings will be helpful to understand the forming mechanism of laser additive manufacturing of 18Ni300 components.

Details

Rapid Prototyping Journal, vol. 24 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of over 2000