Search results

1 – 10 of 277
Article
Publication date: 9 April 2024

Yannis Lianopoulos, Nikoleta Kotsi, Thomas Karagiorgos and Nicholas D. Theodorakis

The purpose of the present study was to investigate the interrelationships among the dimensions of sport event experience, event satisfaction and event behavioral intentions.

Abstract

Purpose

The purpose of the present study was to investigate the interrelationships among the dimensions of sport event experience, event satisfaction and event behavioral intentions.

Design/methodology/approach

The sample was comprised of 186 individuals who actively participated in a mass participation sport event. Partial least squares-structural equation modeling (PLS-SEM) was employed to test the relationships among the latent constructs.

Findings

The results indicated that the dimensions of sport event experience predicted 55% of the variance of event satisfaction and 63% of the variance of event behavioral intentions was predicted by sport event experience dimensions and event satisfaction. Specifically, the sensory, affective and relational dimensions of experience sought to have a statistically significant and positive association with event satisfaction, while event satisfaction and the relational dimension of experience were found to have a statistically significant and positive correlation with event behavioral intentions. In addition, event satisfaction was found to mediate the relationships between sensory, affective and relational experiences and event behavioral intentions.

Originality/value

The present study is one of the first that explores the relationships among sport event experience’s dimensions, event satisfaction and positive behavioral intentions in the context of sport event participation.

Details

International Journal of Event and Festival Management, vol. 15 no. 2
Type: Research Article
ISSN: 1758-2954

Keywords

Open Access
Article
Publication date: 31 January 2024

Ali Sevilmiş, Mehmet Doğan, Pablo Gálvez-Ruiz and Jerónimo García-Fernández

The user experience during the use of activities and services is a fundamental aspect for sports managers and can provide a competitive advantage. The purpose of this study was to…

1080

Abstract

Purpose

The user experience during the use of activities and services is a fundamental aspect for sports managers and can provide a competitive advantage. The purpose of this study was to identify the dimensions of experiential quality and the relationship of this construct with customer trust and customer satisfaction in achieving behavioral intention.

Design/methodology/approach

Using a convenience sampling technique, a total of 322 gym users in Turkey participated. A two-step approach was used to test both the model and the research hypotheses [confirmatory factor analysis (CFA) and structural equation modeling (SEM)].

Findings

The interaction quality, physical environmental quality, outcome quality and enjoyment quality were positively related to experiential quality. Similarly, the experimental quality was positively related to customer satisfaction and customer trust. Finally, customer satisfaction was related to behavioral intentions.

Originality/value

This study provides empirical evidence about the importance of experiential quality to gain a competitive advantage in the context of fitness centers.

Details

International Journal of Sports Marketing and Sponsorship, vol. 25 no. 2
Type: Research Article
ISSN: 1464-6668

Keywords

Article
Publication date: 8 May 2024

Mengyao Fan, Xiaojing Ma, Lin Li, Xinpeng Xiao and Can Cheng

In this paper, the complex flow evaporation process of droplet impact on the liquid film in a horizontal falling film evaporator is numerically studied based on smoothed particle…

Abstract

Purpose

In this paper, the complex flow evaporation process of droplet impact on the liquid film in a horizontal falling film evaporator is numerically studied based on smoothed particle hydrodynamics (SPH) method. The purpose of this paper is to present the mechanism of the water treatment problem of the falling film evaporation for the high salinity mine water in Xinjiang region of China.

Design/methodology/approach

To effectively characterize the phase transition problem, the particle splitting and merging techniques are introduced. And the particle absorbing layer is proposed to improve the nonphysical aggregation phenomenon caused by the continuous splitting of gas phase particles. The multiresolution model and the artificial viscosity are adopted.

Findings

The SPH model is validated qualitatively with experiment results and then applied to the evaporation of the droplet impact on the liquid film. It is shown that the larger single droplet initial velocity and the smaller single droplet initial temperature difference between the droplet and liquid film improve the liquid film evaporation. The heat transfer effect of a single droplet is preferable to that of multiple droplets.

Originality/value

A multiphase SPH model for evaporation after the droplet impact on the liquid film is developed and validated. The effects of different factors on liquid film evaporation, including single droplet initial velocity, single droplet initial temperature and multiple droplets are investigated.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 17 February 2022

Md. Habibur Rahman Sobuz, Md. Montaseer Meraz, Ayan Saha, Abu Sayed Mohammad Akid, Noor Md. Sadiqul Hasan, Mizanoor Rahman and Md. Abu Safayet

This study aims to present the variations of optimal seismic control of reinforced cement concrete (RCC) structure using different structural systems. Different third-dimensional…

Abstract

Purpose

This study aims to present the variations of optimal seismic control of reinforced cement concrete (RCC) structure using different structural systems. Different third-dimensional mathematical models are used to examine the responses of multistory flexibly connected frames subjected to earthquake excitations.

Design/methodology/approach

This paper examined a G + 50 multi-storied high-rise structure, which is analyzed using different combinations of moment resistant frames, shear walls, seismic outrigger systems and seismic dampers to observe the effectiveness during ground motion against soft soil conditions. The damping coefficients of added dampers, providing both upper and lower levels are taken into consideration. A finite element modeling and analysis is generated. Then the nature of the structure exposed to ground motion is captured with response spectrum analysis, using BNBC-2020 for four different seismic zones in Bangladesh.

Findings

The response of the structure is investigated according to the amplitude of the displacements, drifts, base shear, stiffness and torsion. The numerical results indicate that adding dampers at the base level can be the most effective against seismic control. However, placing an outrigger bracing system at the middle and top end with shear wall can be the most effective for controlling displacements and drifts.

Originality/value

The response of high-rise structures to seismic forces in Bangladesh’s soft soil conditions is examined at various levels in this study. This study is an original research which contributes to the knowledge to build earthquake resisting high-rises in Bangladesh.

Details

Journal of Engineering, Design and Technology , vol. 22 no. 3
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 23 February 2024

Guizhi Lyu, Peng Wang, Guohong Li, Feng Lu and Shenglong Dai

The purpose of this paper is to present a wall-climbing robot platform for heavy-load with negative pressure adsorption, which could be equipped with a six-degree of freedom (DOF…

Abstract

Purpose

The purpose of this paper is to present a wall-climbing robot platform for heavy-load with negative pressure adsorption, which could be equipped with a six-degree of freedom (DOF) collaborative robot (Cobot) and detection device for inspecting the overwater part of concrete bridge towers/piers for large bridges.

Design/methodology/approach

By analyzing the shortcomings of existing wall-climbing robots in detecting concrete structures, a wall-climbing mobile manipulator (WCMM), which could be compatible with various detection devices, is proposed for detecting the concrete towers/piers of the Hong Kong-Zhuhai-Macao Bridge. The factors affecting the load capacity are obtained by analyzing the antislip and antioverturning conditions of the wall-climbing robot platform on the wall surface. Design strategies for each part of the structure of the wall-climbing robot are provided based on the influencing factors. By deriving the equivalent adsorption force equation, analyzed the influencing factors of equivalent adsorption force and provided schemes that could enhance the load capacity of the wall-climbing robot.

Findings

The adsorption test verifies the maximum negative pressure that the fan module could provide to the adsorption chamber. The load capacity test verifies it is feasible to achieve the expected bearing requirements of the wall-climbing robot. The motion tests prove that the developed climbing robot vehicle could move freely on the surface of the concrete structure after being equipped with a six-DOF Cobot.

Practical implications

The development of the heavy-load wall-climbing robot enables the Cobot to be installed and equipped on the wall-climbing robot, forming the WCMM, making them compatible with carrying various devices and expanding the application of the wall-climbing robot.

Originality/value

A heavy-load wall-climbing robot using negative pressure adsorption has been developed. The wall-climbing robot platform could carry a six-DOF Cobot, making it compatible with various detection devices for the inspection of concrete structures of large bridges. The WCMM could be expanded to detect the concretes with similar structures. The research and development process of the heavy-load wall-climbing robot could inspire the design of other negative-pressure wall-climbing robots.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 8 May 2024

Vishal Kumar and Amitava Mandal

Wire-arc-based additive manufacturing (WAAM) is a promising technology for the efficient and economical fabrication of medium-large components. However, the anisotropic behavior…

Abstract

Purpose

Wire-arc-based additive manufacturing (WAAM) is a promising technology for the efficient and economical fabrication of medium-large components. However, the anisotropic behavior of the multilayered WAAM-fabricated components remains a challenging problem.

Design/methodology/approach

The purpose of this paper is to conduct a comprehensive study of the grain morphology, crystallographic orientation and texture in three regions of the WAAM printed component. Furthermore, the interdependence of the grain morphology in different regions of the fabricated component with their mechanical and tribological properties was established.

Findings

The electron back-scattered diffraction analysis of the top and bottom regions revealed fine recrystallized grains, whereas the middle regions acquired columnar grains with an average size of approximately 8.980 µm. The analysis revealed a higher misorientation angle and an intense crystallographic texture in the upper and lower regions. The investigations found a higher microhardness value of 168.93 ± 1.71 HV with superior wear resistance in the bottom region. The quantitative evaluation of the residual stress detected higher compressive stress in the upper regions. Evidence for comparable ultimate tensile strength and greater elongation (%) compared to its wrought counterpart has been observed.

Originality/value

The study found a good correlation between the grain morphology in different regions of the WAAM-fabricated component and their mechanical and wear properties. The Hall–Petch relationship also established good agreement between the grain morphology and tensile test results. Improved ductility compared to its wrought counterpart was observed. The anisotropy exists with improved mechanical properties along the longitudinal direction. Moreover, cylindrical components have superior tribological properties compared with cuboidal components.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 12 April 2024

Jun Zhao, Hao Zhang, Junwei Liu, Yanfen Gong, Songqiang Wan, Long Liu, Jiacheng Li, Ziyi Song, Shiyao Zhang and Qingrui Li

Based on the weak seismic performance and low ductility of coupled shear walls, engineered cementitious composites (ECC) is utilized to strengthen it to solve the deformation…

Abstract

Purpose

Based on the weak seismic performance and low ductility of coupled shear walls, engineered cementitious composites (ECC) is utilized to strengthen it to solve the deformation problem in tall buildings more effectively and study its mechanical properties more deeply.

Design/methodology/approach

The properties of reinforced concrete coupled shear wall (RCCSW) and reinforced ECC coupled shear wall (RECSW) have been studied by numerical simulation, which is in good agreement with the experimental results. The reliability of the finite element model is verified. On this basis, a detailed parameter study is carried out, including the strength and reinforcement ratio of longitudinal rebar, the placement height of ECC in the wall limb and the position of ECC connecting beams. The study indexes include failure mode and the skeleton curve.

Findings

The results suggest that the bearing capacity of RECSW is significantly affected by the ratio of longitudinal rebar. When the ratio of longitudinal rebar increases from 0.47% to 3.35%, the bearing capacity of RECSW increases from 250 kN to 303 kN, an increase of 21%. The strength of longitudinal rebar has little influence on the bearing capacity of RECSW. When the strength of the longitudinal rebar increases, the bearing capacity of RECSW increases little. The failure mode of RECSW can be improved by lowering the casting height of the ECC beam in a certain range.

Originality/value

In this paper, ECC is used to strengthen the coupled shear wall, and the accuracy of the finite element model is verified from the failure mode and skeleton curve. On this basis, the casting height of the ECC casting wall limb, the strength and reinforcement ratio of longitudinal rebar and the position of the ECC beam are studied in detail.

Details

International Journal of Structural Integrity, vol. 15 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 14 April 2023

Atul Varshney and Vipul Sharma

This paper aims to present the design development and measurement of two aerodynamic slotted X-bands back-to-back planer substrate-integrated rectangular waveguide (SIRWG/SIW) to…

Abstract

Purpose

This paper aims to present the design development and measurement of two aerodynamic slotted X-bands back-to-back planer substrate-integrated rectangular waveguide (SIRWG/SIW) to Microstrip (MS) line transition for satellite and RADAR applications. It facilitates the realization of nonplanar (waveguide-based) circuits into planar form for easy integration with other planar (microstrip) devices, circuits and systems. This paper describes the design of a SIW to microstrip transition. The transition is broadband covering the frequency range of 8–12 GHz. The design and interconnection of microwave components like filters, power dividers, resonators, satellite dishes, sensors, transmitters and transponders are further aided by these transitions. A common planar interconnect is designed with better reflection coefficient/return loss (RL) (S11/S22 ≤ 10 dB), transmission coefficient/insertion loss (IL) (S12/S21: 0–3.0 dB) and ultra-wideband bandwidth on low profile FR-4 substrate for X-band and Ku-band functioning to interconnect modern era MIC/MMIC circuits, components and devices.

Design/methodology/approach

Two series of metal via (6 via/row) have been used so that all surface current and electric field vectors are confined within the metallic via-wall in SIW length. Introduced aerodynamic slots in tapered portions achieve excellent impedance matching and tapered junctions with SIW are mitered for fine tuning to achieve minimum reflections and improved transmissions at X-band center frequency.

Findings

Using this method, the measured IL and RLs are found in concord with simulated results in full X-band (8.22–12.4 GHz). RLC T-equivalent and p-equivalent electrical circuits of the proposed design are presented at the end.

Practical implications

The measurement of the prototype has been carried out by an available low-cost X-band microwave bench and with a Keysight E4416A power meter in the microwave laboratory.

Originality/value

The transition is fabricated on FR-4 substrate with compact size 14 mm × 21.35 mm × 1.6 mm and hence economical with IL lie within limits 0.6–1 dB and RL is lower than −10 dB in bandwidth 7.05–17.10 GHz. Because of such outstanding fractional bandwidth (FBW: 100.5%), the transition could also be useful for Ku-band with IL close to 1.6 dB.

Details

World Journal of Engineering, vol. 21 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Book part
Publication date: 16 May 2024

Gunnar Leymann and Anna Kehl

Multinational enterprises (MNEs) own and control technological resources and capabilities that make them critical actors in accelerating the transition toward net zero. Even…

Abstract

Multinational enterprises (MNEs) own and control technological resources and capabilities that make them critical actors in accelerating the transition toward net zero. Even beyond the energy sector, stakeholders are putting increasing pressure on MNEs to reduce the carbon intensity of their operations, that is, to improve their carbon performance. While there is unambiguous evidence that national climate policy is a critical catalyst for long-term carbon performance improvements, there is limited research on how MNEs’ carbon strategies react to climate policies. This chapter reviews the concepts, drivers, and strategies connected to carbon performance in the broader sustainability and management literature to clarify potential complementarities to international business (IB). The authors then highlight how MNEs will face increasing institutional complexity along two dimensions: (1) the structural diversity of institutional environments and (2) institutional dynamism, primarily reflected by public policy. The proposed conceptual framework maps these two dimensions to national and subnational levels, and the authors present two data sources that allow the quantitative analysis of country differences in the diversity and dynamism of national climate policy. The authors conclude that there are ample opportunities for IB researchers to explore MNEs’ strategic reactions to climate policy and to inform policymakers about the consequences of national climate policy in the global economy.

Details

Walking the Talk? MNEs Transitioning Towards a Sustainable World
Type: Book
ISBN: 978-1-83549-117-1

Keywords

Article
Publication date: 10 May 2024

Manjeet Kumar, Pradeep Kaswan and Manjeet Kumari

The purpose of this paper is to showcase the utilization of the magnetohydrodynamics-microrotating Casson’s nanofluid flow model (MHD-MRCNFM) in examining the impact of an…

Abstract

Purpose

The purpose of this paper is to showcase the utilization of the magnetohydrodynamics-microrotating Casson’s nanofluid flow model (MHD-MRCNFM) in examining the impact of an inclined magnetic field within a porous medium on a nonlinear stretching plate. This investigation is conducted by using neural networking techniques, specifically using neural networks-backpropagated with the Levenberg–Marquardt scheme (NN-BLMS).

Design/methodology/approach

The initial nonlinear coupled PDEs system that represented the MRCNFM is transformed into an analogous nonlinear ODEs system by the adoption of similarity variables. The reference data set is created by varying important MHD-MRCNFM parameters using the renowned Lobatto IIIA solver. The numerical reference data are used in validation, testing and training sets to locate and analyze the estimated outcome of the created NN-LMA and its comparison with the corresponding reference solution. With mean squared error curves, error histogram analysis and a regression index, better performance is consistently demonstrated. Mu is a controller that controls the complete training process, and the NN-BLMS mainly concentrates on the higher precision of nonlinear systems.

Findings

The peculiar behavior of the appropriate physical parameters on nondimensional shapes is demonstrated and explored via sketches and tables. For escalating amounts of inclination angle and Brinkman number, a viable entropy profile is accomplished. The angular velocity curve grows as the rotation viscosity and surface condition factors rise. The dominance of friction-induced irreversibility is observed in the vicinity of the sheet, whereas in the farthest region, the situation is reversed with heat transfer playing a more significant role in causing irreversibilities.

Originality/value

To improve the efficiency of any thermodynamic system, it is essential to identify and track the sources of irreversible heat losses. Therefore, the authors analyze both flow phenomena and heat transport, with a particular focus on evaluating the generation of entropy within the system.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 277