Search results

1 – 4 of 4
Article
Publication date: 20 April 2015

Santanu Basak, Kartick K Samanta, Sajal K Chattopadhyay, Rajesh Shashikant Narkar and R Mahangade

The purpose of this paper is to use the natural wastage plant product, bannana pseudostem sap (BPS) for using as fire retardant of cellulosic textile substrate. The study aims to…

Abstract

Purpose

The purpose of this paper is to use the natural wastage plant product, bannana pseudostem sap (BPS) for using as fire retardant of cellulosic textile substrate. The study aims to use first time any wastage plant product for making fire retardant cellulosic textile. In this regard flame retardant functionality was imparted in cellulosic textile using BPS, an eco-friendly natural wastage product.

Design/methodology/approach

The extracted sap was made alkaline and applied in pre-mordanted bleached and mercerized cotton fabrics. Flame retardant properties of the control and treated fabrics were analyzed in terms of limiting oxygen index (LOI), horizontal and vertical flammability and total heat of combustion using bomb calorimeter. The thermal degradation and pyrolysis was studied using thermogravimetric analysis (TGA). The chemical composition of the control and BPS treated cellulosic fabric were analyzed by FTIR, SEM and EDX. Durability of the flame retardant functionality to soap washing had also been studied.

Findings

The study showed that the treated fabrics had good flame retardant property compared to control fabrics. The LOI value was found to increase by 1.6 times after application of BPS. As a result of this, the fabric does not catch flame. In horizontal flammability, the treated fabric showed burning with afterglow (without presence of flame) with a propagation rate of 7.5 mm/min, which is almost ten times lower than the control fabric. After application of BPS cellulosic fabric sample produced natural khaki colour. There was no significant change in other physical properties.

Practical implications

The application process is simple and cost-effective as no costly chemicals were used. Further advantage is that the treated fabric could also be considered as natural dyed cotton fabric. The developed khaki colour is quite attractive and stable to sun light exposure. This developed process could used in colouration and flame retardant finishing of home furnishing products such as home-window curtain, railway curtain, hospital curtain, table lamp and as a covering material of non-permanent structure like in book fair, festival, religious purpose, etc., where large quantity of textile is used and has chance of fire hazards.

Social implications

BPS abundantly available in Indian as well as other countries and it is normally considered as waste material. It is eco-friendly and produced from renewable source. Therefore, the application of BPS in cotton textile for colouration and functionalization will give the advantages of value addition using natural product. Rural people will be benifited lot by applying this technology whenever it required.

Originality/value

This paper helps to clarify first time why and how a wastage plant product like BPS can be used for preparing fire retardant cotton cellulosic fabric.

Details

International Journal of Clothing Science and Technology, vol. 27 no. 2
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 6 June 2016

Aysun Aksit, Nurhan Onar, Bengi Kutlu, Evren Sergin and Ismail Yakin

The purpose of this paper is to develop the flame retardancy properties of cotton fabrics with treatment of phosphorus and nitrogen containing silane-based nanosol by sol-gel…

Abstract

Purpose

The purpose of this paper is to develop the flame retardancy properties of cotton fabrics with treatment of phosphorus and nitrogen containing silane-based nanosol by sol-gel process.

Design/methodology/approach

Nanosols containing tetraethoxysilane or (3-aminopropyl) triethoxysilane as precursors, (3-glycidyloxypropyl) trimethoxysilane as cross-linking agent and guanidine phosphate monobasic as flame retarding agent were impregnated on cotton fabrics. Flame retardancy properties of the fabric samples were determined by limited flame spread test and limited oxygen index (LOI) test. In addition, microstructural and surface morphological properties of the fabric samples were characterized by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and scanning electron microscope.

Findings

Depending on the limited flame spread test, the authors show that the coated fabric samples gain flame retardancy properties and the LOI value of the samples increased as to 45.7 per cent by the synergistic effect of phosphorus-nitrogen-silicon.

Originality/value

There have some studies in flame retardancy behaviour of textiles. In this study, flame retardant cotton fabric with very low weight in grams was improved by sol-gel process. Moreover, ecological process was provided thanks to using halogen-free flame retardant.

Details

International Journal of Clothing Science and Technology, vol. 28 no. 3
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 18 July 2018

Siamak Nazemi, Ramin Khajavi, Hamidreza Rabie Far, Mohammad Esmail Yazdanshenas and Manouchehr Raad

This paper is based on the simulation of wind tunnel experiment for better understanding and predicting the behavior of PET fabric in the wind tunnel. This software calculates the…

Abstract

Purpose

This paper is based on the simulation of wind tunnel experiment for better understanding and predicting the behavior of PET fabric in the wind tunnel. This software calculates the drag force of fabric, illustrates pressure in the surrounding of airfoil and velocity of wind in the tunnel during different angles of attack (0°, 45° and 90°). The paper aims to discuss these issues.

Design/methodology/approach

The sol-gel method was applied for the synthesis of silica nano particles. So, PET fabric was coated with precursor (Tetra ethyl ortho silicate) solution first and the process continued on PET fabric. The morphology of obtained hydrophobic fabric samples and their surface roughness was observed and determined by atomic microscopes (AFM and SEM). Experimental data were used for simulation and modeling, and then results were interpreted.

Findings

It was concluded that the surface roughness and its amount can play a significant role in the drag reduction of PET fabric, and surface roughness can change the boundary layer from laminar to turbulent.

Originality/value

At 45 degrees angle of attack, larger boundary layer separation results in a large increase in the drag force. This model is useful for predicting flow behavior in the experimental wind tunnel.

Details

International Journal of Clothing Science and Technology, vol. 30 no. 3
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 14 January 2022

Bekinew Kitaw Dejene, Terefe Belachew Fenta and Chirato Godana Korra

The potential for burn injuries arises from contact with a hot surface, flame, hot liquid and steam hazards. The purpose of this study is to develop the flame retardant acrylic…

Abstract

Purpose

The potential for burn injuries arises from contact with a hot surface, flame, hot liquid and steam hazards. The purpose of this study is to develop the flame retardant acrylic and cotton blend textile finished with Enset Ventricosum pseudostem sap (EPS).

Design/methodology/approach

The two fabric was produced from (30% acrylic with 70% cotton) and (35% acrylic with 65% cotton) blend. The extracted sap was made alkaline and applied on two mordanted blend fabrics. The effect of blend ratio, the concentration of EPS and treatment time on flammability, Flame retardant properties of both the control and the treated fabrics were analyzed in terms of vertical flammability based on the design of the experiment software using central composite design. The air permeability and tensile strength of treated and controlled fabric were measured.

Findings

The blended fabrics at different blended ratios were flame retardant with an optimized result of burning time 2.902 min and 2.775 min and char length 6.442 cm and 7.332 cm in the warp and weft direction, respectively, at a concentration of 520 ml and time 33.588 min. There was a slight significant change in mechanical strengths and air permeability. The thermal degradation and the pyrolysis of the fabric samples were studied using thermogravimetric analysis and the chemical composition by Fourier-transform infrared spectroscopy abbreviated as Fourier-transform infrared spectroscopy. The wash durability of the treated fabric at different blend ratios was carried out for the optimized sample and the test result shows that the flame retardancy property is durable up to 15 washes.

Originality/value

Development of flame retardant cotton and acrylic blend textile fabric finish with ESP was studied; this work provides application of EPS for flame resistance which is optimized statically and successfully applied for a flame retardant property on cotton-acrylic blend fabric.

Details

Research Journal of Textile and Apparel, vol. 27 no. 2
Type: Research Article
ISSN: 1560-6074

Keywords

1 – 4 of 4