Search results

1 – 10 of 10
Article
Publication date: 6 November 2017

Yanbao Guo, Hai Tan, Deguo Wang and Tao Meng

With the rapid development of rail transportation and energy-delivery systems, such as buried oil and gas pipelines and high-voltage transmission lines, the alternating current…

Abstract

Purpose

With the rapid development of rail transportation and energy-delivery systems, such as buried oil and gas pipelines and high-voltage transmission lines, the alternating current (AC) corrosion of buried steel pipelines is becoming more serious. This paper aims to study the corrosion behaviours of Q235 buried steel pipelines induced by the alternating stray current, with a set of indoor simulated experiment apparatuses.

Design/methodology/approach

The corrosion of the coating holidays of the buried steel pipelines at various AC current densities from 0 to 200 A/m2 in the soil-simulating environment was revealed by the electrochemical and weight-loss methods.

Findings

The results showed that the corrosion potential of the steel shifted negatively obviously and the corrosion rate of the steel increased with the increasing of AC current density. At a low AC current density, the negative deviation of the corrosion potential of the steel was small and the increase of corrosion rate was slight. However, the negative deviation of the corrosion potential was remarkable and the corrosion rate was greatly increased at a relative higher AC current density. The geometrical shape of the corrosion images indicated the corrosion forms changed from uniform corrosion to local corrosion due to the increase of AC interference.

Originality/value

Investigation results are of benefit to provide a new strategy to forecast and evaluate the AC-induced corrosion of the buried pipelines which could improve the safety of pipeline transportation.

Details

Anti-Corrosion Methods and Materials, vol. 64 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 8 January 2020

Zhiping Zhu, Chun Shi, Yu Zhang and Zhifeng Liu

The purpose of this paper is to study the effects of Cl and direct stray current on the soil corrosion of three grounding grid materials.

Abstract

Purpose

The purpose of this paper is to study the effects of Cl and direct stray current on the soil corrosion of three grounding grid materials.

Design/methodology/approach

The electrochemical corrosion properties of three grounding grid materials, which include the Q235 steel, Q235 galvanized flat steel and copper, were measured by means of the weak polarization curve method and electrochemical impedance spectroscopy; the corrosion rate of specimens was calculated using the weight loss method; and the specimen surfaces were characterized using the scanning electron microscopy, energy-dispersive spectroscopy and X-ray diffraction analysis.

Findings

Results showed that both factors, Cl and direct stray current, can accelerate the corrosion rate of grounding grid materials. The magnitude of DC stray current density affected the mass transfer type and response frequency of the anode and cathode reaction of grounding materials, while the Cl contents of the soil only affect the mass transfer rate of the electrode material from the electrochemical impedance spectroscopy diagrams. The electric field generated by the DC stray current caused Cl directed migration. The larger the DC stray current density, the greater the diffusion process and the greater the weight loss rate of the grounding grid materials that would have a logarithmic relationship with the Cl content at the same DC stray current density. The corrosion resistance of the three materials is copper > Q235 galvanized flat steel > Q235 flat steel.

Originality/value

The paper provides information regarding the relationship among Cl, direct stray current and corrosion of three grounding grid materials by means of electrochemical impedance spectroscopy. Meanwhile the weight loss rate is the logarithmic relationship with the Cl content, which is useful for understanding the corrosion mechanism of Q235 steel, Q235 galvanized flat steel and copper under the condition of Cl and direct stray current in soil.

Details

Anti-Corrosion Methods and Materials, vol. 67 no. 1
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 15 January 2019

Jun Wang, Zili Li, Gan Cui, JianGuo Liu, Chuanping Kong, Long Wang, Ge Gao and Jian Guo

The purpose of this paper is to study the corrosion behaviors of X70 steel under direct current (DC) interference at 0-1,200 A/m2 in simulated soil solution.

Abstract

Purpose

The purpose of this paper is to study the corrosion behaviors of X70 steel under direct current (DC) interference at 0-1,200 A/m2 in simulated soil solution.

Design/methodology/approach

The Tafel polarization curves of X70 steel under DC interference were tested using electrochemical method, the corrosion rate was calculated using weight-loss method and the change in steel surface was analyzed by optical microscopy.

Findings

The results showed that E-I polarization curves under 200-1,200 A/m2 interference were linear; with an increase in the DC density, the corrosion potential of X70 steel shifted positively, solution pH after the weight-loss tests increased and corrosion rate increased linearly. A mathematical relationship between polarization resistance Rp and current density was established. Corrosion morphology indicated that pitting corrosion and crevice corrosion occurred on the X70 steel under DC interference in simulated soil solution.

Originality/value

All tests were conducted at a relative higher DC density (200-1,200 A/m2). The linear fitting method is proposed to fit data of Tafel polarization curves under DC interference. This study provides guidelines for safe operation of X70 steel pipelines.

Details

Anti-Corrosion Methods and Materials, vol. 66 no. 3
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 17 May 2013

Jing Fu, Feng Pei, Zhiping Zhu, Zhenghui Tan, Xu Tian, Rongjun Mao and Leijing Wang

The purpose of this paper is to study the influence of moisture on corrosion behaviour of steel ground rods in mildly desertified soil and the mechanism behind it.

Abstract

Purpose

The purpose of this paper is to study the influence of moisture on corrosion behaviour of steel ground rods in mildly desertified soil and the mechanism behind it.

Design/methodology/approach

The specimens were used for weight loss corrosion experiments and polarization scans were taken at different moisture levels. Specimen surfaces were characterized using a scanning electron microscope, energy dispersive spectrometer, and using X‐ray diffraction.

Findings

The results indicated that the moisture content of the soil influenced steel corrosion considerably. The maximum corrosion of 20G and Q235 galvanised steels occurred at 10 per cent and 12.5 per cent soil moisture, respectively. The corrosion products of 20G steel were mostly Fe2O3 and Fe3O4, whereas that of Q235 galvanised steel was Zn5(OH)8Cl2 · H2O.

Originality/value

The paper provides information regarding the relationship between moisture and corrosion of steel ground rods, which is useful for understanding the mechanism of soil corrosion. The research results can provide theoretical guidelines for preventing the corrosion of steel ground rods buried in mildly desertified soil.

Details

Anti-Corrosion Methods and Materials, vol. 60 no. 3
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 18 December 2023

Yingying Li, Lanlan Liu, Jun Wang, Song Xu, Hui Su, Yi Xie and Tangqing Wu

The purpose of this paper is to study the corrosion behavior of Q235 steel in saturated acidic red and yellow soils.

Abstract

Purpose

The purpose of this paper is to study the corrosion behavior of Q235 steel in saturated acidic red and yellow soils.

Design/methodology/approach

The corrosion behavior of Q235 steel in saturated red and yellow soils was compared by weight-loss, SEM/EDS, 3D ultra-depth microscopy and electrochemical measurements.

Findings

Rp of the steel gradually increases and icorr gradually decreases in both the red and yellow soils with time. The Rp of the steel in the red soil is lower, but its icorr is higher than that in the yellow soil. The uniform corrosion rate, diameter and density of the corrosion pit on the steel surface in the red soil are greater than those in the yellow soil. Lower pH, higher contents of corrosive anions and high-valence Fe oxides in the red soil are responsible for its higher corrosion rates and local corrosion susceptibility.

Originality/value

This paper investigates the difference in corrosion behavior of carbon steel in saturated acidic red and yellow soils, which can help to understand the mechanism of soil corrosion.

Details

Anti-Corrosion Methods and Materials, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 2 November 2015

Gan Cui, Zili Li, Lingyu Zhao and Xu Wei

The purpose of this investigation was to study these problems and design regional cathodic protection, using numerical simulation. Regional cathodic protection technology is…

Abstract

Purpose

The purpose of this investigation was to study these problems and design regional cathodic protection, using numerical simulation. Regional cathodic protection technology is immature at home and abroad. This is reflected in the fact that in gas stations, there are many underground pipelines, which can lead to serious interference and shielding phenomena, and there are many grounding networks that can cause substantial loss of the cathodic protection current.

Design/methodology/approach

Based on the above, in this article, first of all, the mathematical model of the buried pipeline cathodic protection potential distribution was established and the control equations solved using the boundary element method. Second, the cathodic shielding effect in pipeline concentration areas, the effect of instrument equipment grounding systems on cathodic protection and the influence of DC stray current on the interference of pipeline corrosion were studied separately using BEASY software. Finally, the BEASY software was used for a regional cathodic protection design for a real gas station.

Findings

It was concluded that impressed current used in combination with sacrificial anodes for regional cathodic protection design is often the most economic and effective approach. However, the output current of the auxiliary anode is large with high energy consumption. In consequence, it may be recommended that the station pipelines should be laid on the ground, rather than under it.

Originality/value

It is considered that the results can guide regional cathodic protection design for real-life installations very well.

Details

Anti-Corrosion Methods and Materials, vol. 62 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 11 January 2023

Hui Su, Lanlan Liu, Yang Yang, Zhen Zhong, Song Xu, Yi Xie and Tangqing Wu

The purpose of this paper is to study the corrosion behavior of Q235 steel in the bentonite-based resistance-reducing agent (RRA) with different infiltration rates of underground…

Abstract

Purpose

The purpose of this paper is to study the corrosion behavior of Q235 steel in the bentonite-based resistance-reducing agent (RRA) with different infiltration rates of underground water.

Design/methodology/approach

The corrosion behavior of the steel in underground water was assessed by weight loss experiment, electrochemical impedance spectroscopy and polarization curve.

Findings

The results showed that the corrosion rate of the steel in the RRA pastes was much lower than that in the original acidic soil. The underground water infiltration slightly accelerated the corrosion rate of the steel in the RRA pastes, but the acceleration role is weak. The bentonite-based RRA can be compatibly applied in the acidic soil.

Originality/value

The bentonite-based RRA can significantly reduce the corrosion rate of the steel and is suitable to compatibly apply in the acidic soil.

Details

Anti-Corrosion Methods and Materials, vol. 70 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 24 March 2021

Wei Zhang, Hongqun Liu, Minglei Hu and Wei Wu

This paper aims to make clear the sensitive zone of subsea pipeline to stress corrosion cracking (SCC) under a disbonded coating.

Abstract

Purpose

This paper aims to make clear the sensitive zone of subsea pipeline to stress corrosion cracking (SCC) under a disbonded coating.

Design/methodology/approach

The change of microenvironment under a disbonded coating in artificial seawater was analyzed by using a rectangular crevice cell. The SCC behavior of subsea pipeline was studied by slow strain rate tensile tests.

Findings

The microenvironment at the crevice bottom exhibits obvious acidification, Cl- aggregation and cathodic protection potential (CP) rise. Accordingly, the susceptibility of X70 steels to SCC is high due to the intensive anodic dissolution effect. At the opening, hydrogen atom can access into the steel and induce hydrogen embrittlement effect on account of the applied over-protected CP potential, resulting in a relatively high susceptibility to SCC. The corrosiveness of the microenvironment at crevice middle, however, is mild with proper CP potential; thus, the susceptibility of X70 steel to SCC here is lower than that obtained at the opening and the crevice bottom.

Originality/value

A rectangular crevice cell is built to survey the microenvironment evolution under a disbonded coating in situ. The sensitive zone of subsea pipeline to SCC under a disbonded coating is clarified.

Details

Anti-Corrosion Methods and Materials, vol. 68 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 31 January 2020

JiaYu Zhou, Zili Li, JianGuo Liu, Xiao Xing, Gan Cui, ShouXin Zhang, Ran Cheng and YiShu Wang

The purpose of this paper is to quantify the influence of alternating current (AC) interference on hydrogen evolution reaction of X80 steel.

Abstract

Purpose

The purpose of this paper is to quantify the influence of alternating current (AC) interference on hydrogen evolution reaction of X80 steel.

Design/methodology/approach

The hydrogen evolution potential was obtained by cathodic potentiodynamic polarization curve. The instantaneous potential under AC interference was obtained by high-frequency acquisition with three-electrode system. Electrochemical impedance spectroscopy and Tafel polarization curves were used to study the influence mechanism of AC interference on instantaneous potential.

Findings

It was concluded that the hydrogen evolution reaction could occur on X80 steel under AC interference. There were critical AC current densities of about 100 to 200 A/m2, beyond which the cathode reaction of X80 steel changed from oxygen absorption to hydrogen evolution. Besides the pH value, the initial polarization potential EZ and impedance module of the steel/electrolyte interface under AC interference were also the factors that affected the critical AC densities in different solutions.

Originality/value

This research quantified the hydrogen evolution capacity of X80 steel under AC interference, which could be applied to clear the effect of AC interference on hydrogen evolution reaction.

Details

Anti-Corrosion Methods and Materials, vol. 67 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 2 March 2015

Zhenxing Ren, Daowu Yang, Jun Liu, Yong Ma, Zhongtang Huo and Shaochang Zheng

The purpose of the paper was to design an anti-corrosion system that combined conductive coatings with cathodic protection for a 500-kV substation ground grid, and provide a basis…

330

Abstract

Purpose

The purpose of the paper was to design an anti-corrosion system that combined conductive coatings with cathodic protection for a 500-kV substation ground grid, and provide a basis for the anti-corrosion construction of the installation.

Design/methodology/approach

The study took the Shaoguan 500-kV substation grounding grid as the research object. The anti-corrosion performance of KV conductive coatings on grounding metal was researched. In parallel, the alkalinity of substation soil was evaluated according to the German DIN50929 Standard, and the combined protection system comprising conductive coatings and impressed current cathodic protection was designed.

Findings

KV conductive coatings, that have resistance to acids, alkalis and salts, can effectively slow down the corrosion rate of the grounding grid. The investigation also provided the outline design, installation, construction requirements and monitoring methods for the 500-kV substation grounding grid.

Originality/value

This report contains some guiding significance for anti-corrosion engineering of 500-kV substation grounding grids.

Details

Anti-Corrosion Methods and Materials, vol. 62 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

1 – 10 of 10