Search results

1 – 10 of over 23000
Article
Publication date: 24 January 2023

Yali Wang, Jian Zuo, Min Pan, Bocun Tu, Rui-Dong Chang, Shicheng Liu, Feng Xiong and Na Dong

Accurate and timely cost prediction is critical to the success of construction projects which is still facing challenges especially at the early stage. In the context of rapid…

Abstract

Purpose

Accurate and timely cost prediction is critical to the success of construction projects which is still facing challenges especially at the early stage. In the context of rapid development of machine learning technology and the massive cost data from historical projects, this paper aims to propose a novel cost prediction model based on historical data with improved performance when only limited information about the new project is available.

Design/methodology/approach

The proposed approach combines regression analysis (RA) and artificial neural network (ANN) to build a novel hybrid cost prediction model with the former as front-end prediction and the latter as back-end correction. Firstly, the main factors influencing the cost of building projects are identified through literature research and subsequently screened by principal component analysis (PCA). Secondly the optimal RA model is determined through multi-model comparison and used for front-end prediction. Finally, ANN is applied to construct the error correction model. The hybrid RA-ANN model was trained and tested with cost data from 128 completed construction projects in China.

Findings

The results show that the hybrid cost prediction model has the advantages of both RA and ANN whose prediction accuracy is higher than that of RA and ANN only with the information such as total floor area, height and number of floors.

Originality/value

(1) The most critical influencing factors of the buildings’ cost are found out by means of PCA on the historical data. (2) A novel hybrid RA-ANN model is proposed which proved to have the advantages of both RA and ANN with higher accuracy. (3) The comparison among different models has been carried out which is helpful to future model selection.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 28 June 2021

Meseret Getnet Meharie, Wubshet Jekale Mengesha, Zachary Abiero Gariy and Raphael N.N. Mutuku

The purpose of this study to apply stacking ensemble machine learning algorithm for predicting the cost of highway construction projects.

Abstract

Purpose

The purpose of this study to apply stacking ensemble machine learning algorithm for predicting the cost of highway construction projects.

Design/methodology/approach

The proposed stacking ensemble model was developed by combining three distinct base predictive models automatically and optimally: linear regression, support vector machine and artificial neural network models using gradient boosting algorithm as meta-regressor.

Findings

The findings reveal that the proposed model predicted the final project cost with a very small prediction error value. This implies that the difference between predicted and actual cost was quite small. A comparison of the results of the models revealed that in all performance metrics, the stacking ensemble model outperforms the sole ones. The stacking ensemble cost model produces 86.8, 87.8 and 5.6 percent more accurate results than linear regression, vector machine support, and neural network models, respectively, based on the root mean square error values.

Research limitations/implications

The study shows how stacking ensemble machine learning algorithm applies to predict the cost of construction projects. The estimators or practitioners can use the new model as an effectual and reliable tool for predicting the cost of Ethiopian highway construction projects at the preliminary stage.

Originality/value

The study provides insight into the machine learning algorithm application in forecasting the cost of future highway construction projects in Ethiopia.

Details

Engineering, Construction and Architectural Management, vol. 29 no. 7
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 2 October 2017

Fang Shutian, Zhao Tianyi and Zhang Ying

This study aims to predict the construction cost in China, the authors purposed a fused method.

Abstract

Purpose

This study aims to predict the construction cost in China, the authors purposed a fused method.

Design/methodology/approach

The authors extracted 22 factors which may influence the cost and performed the correlation analysis with cost. They chose the highest 10 factors to predict cost by the fused method. The method fused the Kalman filter with least squares support vector machine and multiple linear regression.

Findings

Ten factors which affect the cost most were found. The construction cost in China can be predicted by the presented method precisely. The statistical filter method could be used in the field of construction cost prediction.

Research limitations/implications

The construction cost and construction interior factors are a business secret in China. So, the authors only collected 24 buildings’ data to perform the experiments.

Practical implications

There is no standard and precise method to predict construction cost in China, so the presented method offers a new way to judge the feasibility of projects and select design schemes of construction.

Originality/value

The authors purposed a new fused method to predict construction cost. It is the first time that the statistical filtering method was used in this field. The effectiveness was verified by the experiments. Ten factors which have a high relationship with construction cost were found.

Details

Engineering Computations, vol. 34 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 26 December 2023

Farshad Peiman, Mohammad Khalilzadeh, Nasser Shahsavari-Pour and Mehdi Ravanshadnia

Earned value management (EVM)–based models for estimating project actual duration (AD) and cost at completion using various methods are continuously developed to improve the…

Abstract

Purpose

Earned value management (EVM)–based models for estimating project actual duration (AD) and cost at completion using various methods are continuously developed to improve the accuracy and actualization of predicted values. This study primarily aimed to examine natural gradient boosting (NGBoost-2020) with the classification and regression trees (CART) base model (base learner). To the best of the authors' knowledge, this concept has never been applied to EVM AD forecasting problem. Consequently, the authors compared this method to the single K-nearest neighbor (KNN) method, the ensemble method of extreme gradient boosting (XGBoost-2016) with the CART base model and the optimal equation of EVM, the earned schedule (ES) equation with the performance factor equal to 1 (ES1). The paper also sought to determine the extent to which the World Bank's two legal factors affect countries and how the two legal causes of delay (related to institutional flaws) influence AD prediction models.

Design/methodology/approach

In this paper, data from 30 construction projects of various building types in Iran, Pakistan, India, Turkey, Malaysia and Nigeria (due to the high number of delayed projects and the detrimental effects of these delays in these countries) were used to develop three models. The target variable of the models was a dimensionless output, the ratio of estimated duration to completion (ETC(t)) to planned duration (PD). Furthermore, 426 tracking periods were used to build the three models, with 353 samples and 23 projects in the training set, 73 patterns (17% of the total) and six projects (21% of the total) in the testing set. Furthermore, 17 dimensionless input variables were used, including ten variables based on the main variables and performance indices of EVM and several other variables detailed in the study. The three models were subsequently created using Python and several GitHub-hosted codes.

Findings

For the testing set of the optimal model (NGBoost), the better percentage mean (better%) of the prediction error (based on projects with a lower error percentage) of the NGBoost compared to two KNN and ES1 single models, as well as the total mean absolute percentage error (MAPE) and mean lags (MeLa) (indicating model stability) were 100, 83.33, 5.62 and 3.17%, respectively. Notably, the total MAPE and MeLa for the NGBoost model testing set, which had ten EVM-based input variables, were 6.74 and 5.20%, respectively. The ensemble artificial intelligence (AI) models exhibited a much lower MAPE than ES1. Additionally, ES1 was less stable in prediction than NGBoost. The possibility of excessive and unusual MAPE and MeLa values occurred only in the two single models. However, on some data sets, ES1 outperformed AI models. NGBoost also outperformed other models, especially single models for most developing countries, and was more accurate than previously presented optimized models. In addition, sensitivity analysis was conducted on the NGBoost predicted outputs of 30 projects using the SHapley Additive exPlanations (SHAP) method. All variables demonstrated an effect on ETC(t)/PD. The results revealed that the most influential input variables in order of importance were actual time (AT) to PD, regulatory quality (RQ), earned duration (ED) to PD, schedule cost index (SCI), planned complete percentage, rule of law (RL), actual complete percentage (ACP) and ETC(t) of the ES optimal equation to PD. The probabilistic hybrid model was selected based on the outputs predicted by the NGBoost and XGBoost models and the MAPE values from three AI models. The 95% prediction interval of the NGBoost–XGBoost model revealed that 96.10 and 98.60% of the actual output values of the testing and training sets are within this interval, respectively.

Research limitations/implications

Due to the use of projects performed in different countries, it was not possible to distribute the questionnaire to the managers and stakeholders of 30 projects in six developing countries. Due to the low number of EVM-based projects in various references, it was unfeasible to utilize other types of projects. Future prospects include evaluating the accuracy and stability of NGBoost for timely and non-fluctuating projects (mostly in developed countries), considering a greater number of legal/institutional variables as input, using legal/institutional/internal/inflation inputs for complex projects with extremely high uncertainty (such as bridge and road construction) and integrating these inputs and NGBoost with new technologies (such as blockchain, radio frequency identification (RFID) systems, building information modeling (BIM) and Internet of things (IoT)).

Practical implications

The legal/intuitive recommendations made to governments are strict control of prices, adequate supervision, removal of additional rules, removal of unfair regulations, clarification of the future trend of a law change, strict monitoring of property rights, simplification of the processes for obtaining permits and elimination of unnecessary changes particularly in developing countries and at the onset of irregular projects with limited information and numerous uncertainties. Furthermore, the managers and stakeholders of this group of projects were informed of the significance of seven construction variables (institutional/legal external risks, internal factors and inflation) at an early stage, using time series (dynamic) models to predict AD, accurate calculation of progress percentage variables, the effectiveness of building type in non-residential projects, regular updating inflation during implementation, effectiveness of employer type in the early stage of public projects in addition to the late stage of private projects, and allocating reserve duration (buffer) in order to respond to institutional/legal risks.

Originality/value

Ensemble methods were optimized in 70% of references. To the authors' knowledge, NGBoost from the set of ensemble methods was not used to estimate construction project duration and delays. NGBoost is an effective method for considering uncertainties in irregular projects and is often implemented in developing countries. Furthermore, AD estimation models do fail to incorporate RQ and RL from the World Bank's worldwide governance indicators (WGI) as risk-based inputs. In addition, the various WGI, EVM and inflation variables are not combined with substantial degrees of delay institutional risks as inputs. Consequently, due to the existence of critical and complex risks in different countries, it is vital to consider legal and institutional factors. This is especially recommended if an in-depth, accurate and reality-based method like SHAP is used for analysis.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 6 January 2021

Miao Fan and Ashutosh Sharma

In order to improve the accuracy of project cost prediction, considering the limitations of existing models, the construction cost prediction model based on SVM (Standard Support…

Abstract

Purpose

In order to improve the accuracy of project cost prediction, considering the limitations of existing models, the construction cost prediction model based on SVM (Standard Support Vector Machine) and LSSVM (Least Squares Support Vector Machine) is put forward.

Design/methodology/approach

In the competitive growth and industries 4.0, the prediction in the cost plays a key role.

Findings

At the same time, the original data is dimensionality reduced. The processed data are imported into the SVM and LSSVM models for training and prediction respectively, and the prediction results are compared and analyzed and a more reasonable prediction model is selected.

Originality/value

The prediction result is further optimized by parameter optimization. The relative error of the prediction model is within 7%, and the prediction accuracy is high and the result is stable.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 14 no. 2
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 27 June 2019

Samira Nadafi, Seyed Hamed Moosavirad and Shahram Ariafar

The purpose of this paper is to determine the project completion time and cost under non-deterministic conditions using interval gray numbers (IGNs).

Abstract

Purpose

The purpose of this paper is to determine the project completion time and cost under non-deterministic conditions using interval gray numbers (IGNs).

Design/methodology/approach

The earned value management (EVM) method based on the IGN has been developed.

Findings

The EVM method based on the IGN has been verified by a numerical example that can be applied to construction projects.

Practical implications

The EVM method, based on the gray numbers, reduces the budget and time shortage risk. Also, using this method, the managers would not be restricted to provide very exact values in their progress reports in the non-deterministic conditions.

Originality/value

One notable and significant point in all projects during the execution process is to estimate the project completion time and cost. However, non-deterministic conditions for both planned and actual physical completion percentage of projects have not been considered for predicting the project completion time and cost in the literature. Therefore, the novelty of this paper is the prediction of project completion time and cost under non-deterministic conditions using IGN.

Details

Engineering, Construction and Architectural Management, vol. 26 no. 9
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 1 April 2000

RODNEY HOWES

Earned Value Analysis (EVA) is an accepted theoretical technique advocated for the control of projects. This paper attempts to refine and improve the performance of traditional…

2359

Abstract

Earned Value Analysis (EVA) is an accepted theoretical technique advocated for the control of projects. This paper attempts to refine and improve the performance of traditional EVA by the introduction of a hybrid methodology based on work packages and logical time analysis entitled Work Package Methodology (WPM). The proposed WPM provides the means to periodically update project cost and time performance by restricting EVA calculations to individual work packages. These are then subjected to a logical time analysis to determine the predicted project cost and time to completion. A comparative analysis between WPM and EVA is then undertaken using adapted test data derived from knowledge of previous projects to identify the reasons for variation in the results obtained from both methods. The evaluation of the test results indicates that when the Cost Performance Index (CPI) and the Schedule Performance Index (SPI) are well above or below unity then, especially in the early stages of the project, traditionally applied EVA predictions can be un‐realiable and require further investigation and evaluation. WPM provides a vehicle for judging the performance of EVA by applying an alternative logical time and cost utilizing work sequence and construction methods. The predictive performance of EVA is refined by these means.

Details

Engineering, Construction and Architectural Management, vol. 7 no. 4
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 27 December 2022

Bright Awuku, Eric Asa, Edmund Baffoe-Twum and Adikie Essegbey

Challenges associated with ensuring the accuracy and reliability of cost estimation of highway construction bid items are of significant interest to state highway transportation…

Abstract

Purpose

Challenges associated with ensuring the accuracy and reliability of cost estimation of highway construction bid items are of significant interest to state highway transportation agencies. Even with the existing research undertaken on the subject, the problem of inaccurate estimation of highway bid items still exists. This paper aims to assess the accuracy of the cost estimation methods employed in the selected studies to provide insights into how well they perform empirically. Additionally, this research seeks to identify, synthesize and assess the impact of the factors affecting highway unit prices because they affect the total cost of highway construction costs.

Design/methodology/approach

This paper systematically searched, selected and reviewed 105 papers from Scopus, Google Scholar, American Society of Civil Engineers (ASCE), Transportation Research Board (TRB) and Science Direct (SD) on conceptual cost estimation of highway bid items. This study used content and nonparametric statistical analyses to determine research trends, identify, categorize the factors influencing highway unit prices and assess the combined performance of conceptual cost prediction models.

Findings

Findings from the trend analysis showed that between 1983 and 2019 North America, Asia, Europe and the Middle East contributed the most to improving highway cost estimation research. Aggregating the quantitative results and weighting the findings using each study's sample size revealed that the average error between the actual and the estimated project costs of Monte-Carlo simulation models (5.49%) performed better compared to the Bayesian model (5.95%), support vector machines (6.03%), case-based reasoning (11.69%), artificial neural networks (12.62%) and regression models (13.96%). This paper identified 41 factors and was grouped into three categories, namely: (1) factors relating to project characteristics; (2) organizational factors and (3) estimate factors based on the common classification used in the selected papers. The mean ranking analysis showed that most of the selected papers used project-specific factors more when estimating highway construction bid items than the other factors.

Originality/value

This paper contributes to the body of knowledge by analyzing and comparing the performance of highway cost estimation models, identifying and categorizing a comprehensive list of cost drivers to stimulate future studies in improving highway construction cost estimates.

Details

Engineering, Construction and Architectural Management, vol. 31 no. 3
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 13 June 2023

G. Deepa, A.J. Niranjana and A.S. Balu

This study aims at proposing a hybrid model for early cost prediction of a construction project. Early cost prediction for a construction project is the basic approach to procure…

Abstract

Purpose

This study aims at proposing a hybrid model for early cost prediction of a construction project. Early cost prediction for a construction project is the basic approach to procure a project within a predefined budget. However, most of the projects routinely face the impact of cost overruns. Furthermore, conventional and manual cost computing techniques are hectic, time-consuming and error-prone. To deal with such challenges, soft computing techniques such as artificial neural networks (ANNs), fuzzy logic and genetic algorithms are applied in construction management. Each technique has its own constraints not only in terms of efficiency but also in terms of feasibility, practicability, reliability and environmental impacts. However, appropriate combination of the techniques improves the model owing to their inherent nature.

Design/methodology/approach

This paper proposes a hybrid model by combining machine learning (ML) techniques with ANN to accurately predict the cost of pile foundations. The parameters contributing toward the cost of pile foundations were collected from five different projects in India. Out of 180 collected data entries, 176 entries were finally used after data cleaning. About 70% of the final data were used for building the model and the remaining 30% were used for validation.

Findings

The proposed model is capable of predicting the pile foundation costs with an accuracy of 97.42%.

Originality/value

Although various cost estimation techniques are available, appropriate use and combination of various ML techniques aid in improving the prediction accuracy. The proposed model will be a value addition to cost estimation of pile foundations.

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 27 June 2023

Nirodha Fernando, Kasun Dilshan T.A. and Hexin (Johnson) Zhang

The Government’s investment in infrastructure projects is considerably high, especially in bridge construction projects. Government authorities must establish an initial…

Abstract

Purpose

The Government’s investment in infrastructure projects is considerably high, especially in bridge construction projects. Government authorities must establish an initial forecasted budget to have transparency in transactions. Early cost estimating is challenging for Quantity Surveyors due to incomplete project details at the initial stage and the unavailability of standard cost estimating techniques for bridge projects. To mitigate the difficulties in the traditional preliminary cost estimating methods, there is a requirement to develop a new initial cost estimating model which is accurate, user friendly and straightforward. The research was carried out in Sri Lanka, and this paper aims to develop the artificial neural network (ANN) model for an early cost estimate of concrete bridge systems.

Design/methodology/approach

The construction cost data of 30 concrete bridge projects which are in Sri Lanka constructed within the past ten years were trained and tested to develop an ANN cost model. Backpropagation technique was used to identify the number of hidden layers, iteration and momentum for optimum neural network architectures.

Findings

An ANN cost model was developed, furnishing the best result since it succeeded with around 90% validation accuracy. It created a cost estimation model for the public sector as an accurate, heuristic, flexible and efficient technique.

Originality/value

The research contributes to the current body of knowledge by providing the most accurate early-stage cost estimate for the concrete bridge systems in Sri Lanka. In addition, the research findings would be helpful for stakeholders and policymakers to propose policy recommendations that positively influence the prediction of the most accurate cost estimate for concrete bridge construction projects in Sri Lanka and other developing countries.

Details

Journal of Financial Management of Property and Construction , vol. 29 no. 1
Type: Research Article
ISSN: 1366-4387

Keywords

1 – 10 of over 23000