Search results

1 – 10 of over 4000
Article
Publication date: 12 October 2023

Xiaoli Su, Lijun Zeng, Bo Shao and Binlong Lin

The production planning problem with fine-grained information has hardly been considered in practice. The purpose of this study is to investigate the data-driven production…

Abstract

Purpose

The production planning problem with fine-grained information has hardly been considered in practice. The purpose of this study is to investigate the data-driven production planning problem when a manufacturer can observe historical demand data with high-dimensional mixed-frequency features, which provides fine-grained information.

Design/methodology/approach

In this study, a two-step data-driven optimization model is proposed to examine production planning with the exploitation of mixed-frequency demand data is proposed. First, an Unrestricted MIxed DAta Sampling approach is proposed, which imposes Group LASSO Penalty (GP-U-MIDAS). The use of high frequency of massive demand information is analytically justified to significantly improve the predictive ability without sacrificing goodness-of-fit. Then, integrated with the GP-U-MIDAS approach, the authors develop a multiperiod production planning model with a rolling cycle. The performance is evaluated by forecasting outcomes, production planning decisions, service levels and total cost.

Findings

Numerical results show that the key variables influencing market demand can be completely recognized through the GP-U-MIDAS approach; in particular, the selected accuracy of crucial features exceeds 92%. Furthermore, the proposed approach performs well regarding both in-sample fitting and out-of-sample forecasting throughout most of the horizons. Taking the total cost and service level obtained under the actual demand as the benchmark, the mean values of both the service level and total cost differences are reduced. The mean deviations of the service level and total cost are reduced to less than 2.4%. This indicates that when faced with fluctuating demand, the manufacturer can adopt the proposed model to effectively manage total costs and experience an enhanced service level.

Originality/value

Compared with previous studies, the authors develop a two-step data-driven optimization model by directly incorporating a potentially large number of features; the model can help manufacturers effectively identify the key features of market demand, improve the accuracy of demand estimations and make informed production decisions. Moreover, demand forecasting and optimal production decisions behave robustly with shifting demand and different cost structures, which can provide manufacturers an excellent method for solving production planning problems under demand uncertainty.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 23 January 2023

Bruno Falcón Silveira and Dayana Bastos Costa

Several studies have addressed the use of four-dimensional (4D) building information modeling (BIM) for construction management. However, the automation of the processes for…

Abstract

Purpose

Several studies have addressed the use of four-dimensional (4D) building information modeling (BIM) for construction management. However, the automation of the processes for generating 4D models and their integrated use with Location-Based Planning and the Last Planner® System is not well discussed. Therefore, this paper aims to develop a method for automating the generation and use of 4D BIM models integrated with Location-Based Planning and Last Planner® System supporting project control cycles.

Design/methodology/approach

The research strategy adopted was Design Science Research. The automated method for using the 4D models was developed and refined in two residential building projects in Brazil, along with 31 meetings and involving 11 direct users. The assessment of the proposed method focuses on four constructs: the impact of process automation, the impact on the identification and assessment of site progress and the planning process, ease of adoption and utility of the proposed method.

Findings

The results of this paper indicated increased adherence between planned and executed through an automated method for using the 4D models. The established routines enabled automating the link between the planning levels and the three-dimensional (3D) model, providing a more agile and updated data source and achieving 92.8% of user satisfaction regarding the deadline and frequency of delivery of the 4D model reports. Moreover, this study identified the relationships between the processes of the method proposed and Digital Models.

Originality/value

The primary scientific value achieved in this study is creating a method for automating processes and simplifying steps for the generation and use of 4D BIM models in the production planning and control cycles during the construction phase.

Details

Construction Innovation , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 20 March 2024

Vinod Bhatia and K. Kalaivani

Indian railways (IR) is one of the largest railway networks in the world. As a part of its strategic development initiative, demand forecasting can be one of the indispensable…

Abstract

Purpose

Indian railways (IR) is one of the largest railway networks in the world. As a part of its strategic development initiative, demand forecasting can be one of the indispensable activities, as it may provide basic inputs for planning and control of various activities such as coach production, planning new trains, coach augmentation and quota redistribution. The purpose of this study is to suggest an approach to demand forecasting for IR management.

Design/methodology/approach

A case study is carried out, wherein several models i.e. automated autoregressive integrated moving average (auto-ARIMA), trigonometric regressors (TBATS), Holt–Winters additive model, Holt–Winters multiplicative model, simple exponential smoothing and simple moving average methods have been tested. As per requirements of IR management, the adopted research methodology is predominantly discursive, and the passenger reservation patterns over a five-year period covering a most representative train service for the past five years have been employed. The relative error matrix and the Akaike information criterion have been used to compare the performance of various models. The Diebold–Mariano test was conducted to examine the accuracy of models.

Findings

The coach production strategy has been proposed on the most suitable auto-ARIMA model. Around 6,000 railway coaches per year have been produced in the past 3 years by IR. As per the coach production plan for the year 2023–2024, a tentative 6551 coaches of various types have been planned for production. The insights gained from this paper may facilitate need-based coach manufacturing and optimum utilization of the inventory.

Originality/value

This study contributes to the literature on rail ticket demand forecasting and adds value to the process of rolling stock management. The proposed model can be a comprehensive decision-making tool to plan for new train services and assess the rolling stock production requirement on any railway system. The analysis may help in making demand predictions for the busy season, and the management can make important decisions about the pricing of services.

Details

foresight, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1463-6689

Keywords

Article
Publication date: 13 May 2024

Adam Sadowski, Ryszard Jędrzejczak, Dorota Starzynska and Per Engelseth

This paper aims to show the impact of applied visual management (VM) on performance in logistics operations in the construction industry.

Abstract

Purpose

This paper aims to show the impact of applied visual management (VM) on performance in logistics operations in the construction industry.

Design/methodology/approach

A case study was conducted at a branch of an international company located in Poland on VM implementation in the transport and storage of this firm. Active research was used to include the outlook of top management on the implementation and use of VMs.

Findings

This study demonstrates how VM is an effective way to improve performance in the studied logistics functions. The complex nature of the effect is revealed not only in warehouse and transport operations but also in handling operations, improving operational planning and specializing warehouse teams.

Originality/value

Organizational culture, work discipline and value system in the group of production and warehouse workers is of importance in implementing and efficiently using VM resources. Using a VM is complex.

Details

International Journal of Lean Six Sigma, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-4166

Keywords

Article
Publication date: 30 April 2024

Shiqing Wu, Jiahai Wang, Haibin Jiang and Weiye Xue

The purpose of this study is to explore a new assembly process planning and execution mode to realize rapid response, reduce the labor intensity of assembly workers and improve…

Abstract

Purpose

The purpose of this study is to explore a new assembly process planning and execution mode to realize rapid response, reduce the labor intensity of assembly workers and improve the assembly efficiency and quality.

Design/methodology/approach

Based on the related concepts of digital twin, this paper studies the product assembly planning in digital space, the process execution in physical space and the interaction between digital space and physical space. The assembly process planning is simulated and verified in the digital space to generate three-dimensional visual assembly process specification documents, the implementation of the assembly process specification documents in the physical space is monitored and feed back to revise the assembly process and improve the assembly quality.

Findings

Digital twin technology enhances the quality and efficiency of assembly process planning and execution system.

Originality/value

It provides a new perspective for assembly process planning and execution, the architecture, connections and data acquisition approaches of the digital twin-driven framework are proposed in this paper, which is of important theoretical values. What is more, a smart assembly workbench is developed, the specific image classification algorithms are presented in detail too, which is of some industrial application values.

Details

Robotic Intelligence and Automation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 4 January 2023

Juliana de Jesus Mendes, Marcelo José Carrer, Marcela de Mello Brandão Vinholis and Hildo Meirelles de Souza Filho

This study aimed to identify the determinants of farmers' participation in agricultural information-sharing digital groups and their impacts on farm performance.

Abstract

Purpose

This study aimed to identify the determinants of farmers' participation in agricultural information-sharing digital groups and their impacts on farm performance.

Design/methodology/approach

Primary data of the 2015/2016 crop year collected from 175 cattle farmers were analyzed using descriptive statistics and econometric models. Farmers who had smartphones and participated in social groups/applications, especially those created to exchange agricultural information, were considered adopters of the technology.

Findings

A Poisson hurdle model showed that farmers' decision to participate in agricultural information-sharing digital groups is determined by schooling, age (negative effect) and use of tools for planning production. The intensity of participation is affected by risk propensity, interaction with specialist advisors, use of tools for planning production and participation in cooperatives. The authors also found empirical evidence that farmers' participation in agricultural information-sharing digital groups positively affects farm income per hectare.

Research limitations/implications

The results of this study are important for accelerating the diffusion of low-cost digital technologies, which are powerful tools for improving farmers' sharing and access to valuable information in real time and in locations far from urban areas.

Originality/value

To the best of the authors’ knowledge, this is the first empirical analysis of the adoption and impacts of agricultural information-sharing digital groups/applications by Brazilian cattle farmers. The diffusion of simple digital technologies is important for reducing heterogeneity and increasing the efficiency of cattle production.

Details

Journal of Agribusiness in Developing and Emerging Economies, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2044-0839

Keywords

Open Access
Article
Publication date: 10 May 2022

Sara Harper and Rudrajeet Pal

Technology and market pressures are encouraging localized and small-series production in customer-driven industries. The purpose of this paper is to explore and understand the…

1231

Abstract

Purpose

Technology and market pressures are encouraging localized and small-series production in customer-driven industries. The purpose of this paper is to explore and understand the supply chain-, product- and process-design factors for small-series production in EU’s textile and apparel industry, to understand configuration decisions, priorities and challenges.

Design/methodology/approach

An interview study was undertaken with ten companies that represent diverse small-series production models and value chain roles. Interview data was analysed to identify supply network configuration characteristics, decision priorities and challenges.

Findings

Three small-series production models emerged from the analysis, differing with respect to adoption of process postponement and customization. The findings confirm and extend past research regarding diverse decision priorities and product, process, supply chain structure/relationship configurations. Challenges identified relate to planning (priorities) and implementation (configuration). Whereas competence availability and digital technology challenges are common, several difficulties are linked to production model like tensions related to priorities and small volumes, which are not found with customization.

Research limitations/implications

Future research can make comparisons with other industry and location contexts; adopt dynamic approaches to distinguish between design and reconfiguration processes; and address indicated paradoxical-tensions.

Practical implications

The study findings can provide guidance for companies regarding identification of priorities and management of (planning/implementation) challenges impacting small-series production in T&A.

Originality/value

The paper brings a configuration perspective at the supply chain level to the problem of small-series production implementation, which demands holistic and context-specific understanding.

Details

Journal of Fashion Marketing and Management: An International Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1361-2026

Keywords

Article
Publication date: 28 December 2023

Yadong Dou, Xiaolong Zhang and Ling Chen

The coal-fired power plants have been confronted with new operation challenge since the unified carbon trading market was launched in China. To make the optimal decision for the…

Abstract

Purpose

The coal-fired power plants have been confronted with new operation challenge since the unified carbon trading market was launched in China. To make the optimal decision for the carbon emissions and power production has already been an important subject for the plants. Most of the previous studies only considered the market prices of electricity and coal to optimize the generation plan. However, with the opening of the carbon trading market, carbon emission has become a restrictive factor for power generation. By introducing the carbon-reduction target in the production decision, this study aims to achieve both the environmental and economic benefits for the coal-fired power plants to positively deal with the operational pressure.

Design/methodology/approach

A dynamic optimization approach with both long- and short-term decisions was proposed in this study to control the carbon emissions and power production. First, the operation rules of carbon, electricity and coal markets are analyzed, and a two-step decision-making algorithm for annual and weekly production is presented. Second, a production profit model based on engineering constraints is established, and a greedy heuristics algorithm is applied in the Gurobi solver to obtain the amounts of weekly carbon emission, power generation and coal purchasing. Finally, an example analysis is carried out with five generators of a coal-fired power plant for illustration.

Findings

The results show that the joint information of the multiple markets of carbon, electricity and coal determines the real profitability of power production, which can assist the plants to optimize their production and increase the profits. The case analyses demonstrate that the carbon emission is reduced by 2.89% according to the authors’ method, while the annual profit is improved by 1.55%.

Practical implications

As an important power producer and high carbon emitter, coal-fired power plants should actively participate in the carbon market. Rather than trade blindly at the end of the agreement period, they should deeply associate the prices of carbon, electricity and coal together and realize optimal management of carbon emission and production decision efficiently.

Originality/value

This paper offers an effective method for the coal-fired power plant, which is struggling to survive, to manage its carbon emission and power production optimally.

Details

International Journal of Energy Sector Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1750-6220

Keywords

Article
Publication date: 29 April 2021

Yigit Kazancoglu, Melisa Ozbiltekin Pala, Muruvvet Deniz Sezer, Sunil Luthra and Anil Kumar

The aim of this study is to evaluate Big Data Analytics (BDA) drivers in the context of food supply chains (FSC) for transition to a Circular Economy (CE) and Sustainable…

1922

Abstract

Purpose

The aim of this study is to evaluate Big Data Analytics (BDA) drivers in the context of food supply chains (FSC) for transition to a Circular Economy (CE) and Sustainable Operations Management (SOM).

Design/methodology/approach

Ten different BDA drivers in FSC are examined for transition to CE; these are Supply Chains (SC) Visibility, Operations Efficiency, Information Management and Technology, Collaborations between SC partners, Data-driven innovation, Demand management and Production Planning, Talent Management, Organizational Commitment, Management Team Capability and Governmental Incentive. An interpretive structural modelling (ISM) methodology is used to indicate the relationships between identified drivers to stimulate transition to CE and SOM. Drivers and pair-wise interactions between these drivers are developed by semi-structured interviews with a number of experts from industry and academia.

Findings

The results show that Information Management and Technology, Governmental Incentive and Management Team Capability drivers are classified as independent factors; Organizational Commitment and Operations Efficiency are categorized as dependent factors. SC Visibility, Data-driven innovation, Demand management and Production Planning, Talent Management and Collaborations between SC partners can be classified as linkage factors. It can be concluded that Governmental Incentive is the most fundamental driver to achieve BDA applications in FSC transition from linearity to CE and SOM. In addition, Operations Efficiency, Collaborations between SC partners and Organizational Commitment are key BDA drivers in FSC for transition to CE and SOM.

Research limitations/implications

The interactions between these drivers will provide benefits to both industry and academia in prioritizing and understanding these drivers more thoroughly when implementing BDA based on a range of factors. This study will provide valuable insights. The results from this study will help in drawing up regulations to prevent food fraud, implementing laws concerning government incentives, reducing food loss and waste, increasing tracing and traceability, providing training activities to improve knowledge about BDA and focusing more on data analytics.

Originality/value

The main contribution of the study is to analyze BDA drivers in the context of FSC for transition to CE and SOM. This study is unique in examining these BDA drivers based on FSC. We hope to find sustainable solutions to minimize losses or other negative impacts on these SC.

Details

Journal of Enterprise Information Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1741-0398

Keywords

Article
Publication date: 3 August 2023

Tuğçe Çelik

“Can artificial intelligence produce architectural plan schemes?” discussion is the starting point of this study. The aim of this paper is to question whether this will be a new…

Abstract

Purpose

“Can artificial intelligence produce architectural plan schemes?” discussion is the starting point of this study. The aim of this paper is to question whether this will be a new method in architectural design by producing plans with artificial intelligence interfaces working with human–computer interaction and to create a discussion environment.

Design/methodology/approach

The main research topic is the evaluation of architectural design decisions with the text-to-image generation AI algorithms method based on shape grammar rules. First, a sample space consisting of Palladio plans or plan diagrams was created. Plan diagram production experiments were made with different interfaces (Midjourney, Dall-e2, Stable Diffusion, Craiyon, Nightcafe), and alternative plan diagrams were recorded as outputs. The discussion of the outputs has been made over architectural design and space.

Findings

In the conceptual design phase of the architectural discipline and in the production of architectural plan scheme, AI algorithms are trending. This interaction imposes a new responsibility on architects. AI can create paradigm shifts in architectural processes with its tools with high data processing potential. On the other hand, in this study, it is emphasized that architecture is not just an act of producing visuals, but a functional act of producing visuals.

Originality/value

The technology is effective in producing architectural plans and directing them to artificial intelligence algorithms. With this study, multi-alternative architectural plan productions were tried with text-to-image bots with fast results. In this direction, a new method proposal has been developed for the conceptual design phase in architecture.

Details

Open House International, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0168-2601

Keywords

1 – 10 of over 4000