Search results

1 – 10 of over 1000
Article
Publication date: 7 November 2019

Jian Wang, Chenqi Situ and Mingzhu Yu

This paper aims to study a dynamic post-disaster emergency planning (PDEP) problem in an integrated network through the investigation of the selection of shelters, medical centers…

Abstract

Purpose

This paper aims to study a dynamic post-disaster emergency planning (PDEP) problem in an integrated network through the investigation of the selection of shelters, medical centers and distribution centers (DCs), and the allocation of evacuees and injured people. The resource and people assignment in multiple periods are considered.

Design/methodology/approach

A mathematical formulation is provided for the PDEP problem. The authors decompose the model into two sub-models as follows: the primary model is an integer programming model and the subproblem is a nonlinear programming model with continuous variables. The simulated annealing is used to solve the primary problem, and particle swarm optimization (PSO) mixed with beetle antennae search (BAS) is used to solve the subproblem.

Findings

The paper finds that BAS can increase the stability of PSO and keep the advantages of PSO’s rapid convergence. By implementing these algorithms on emergency planning after the Wenchuan earthquake that happened in China in 2008, this paper finds that the priority of different levels of injured people is influenced by several factors. Even within the same disaster, the priority of different levels of injured can be inconsistent because of the differences in resource levels.

Originality/value

The authors integrate the shelters, medical centers and DCs as a system, and simultaneously, consider evacuees and injured people and different resource assignments. The authors divide the injured people into three levels and use survival rate function to simulate the survival conditions of different people. The authors provide an improved PSO algorithm to solve the problem.

Article
Publication date: 3 June 2021

Mohammad Mahdi Ershadi and Hossein Shams Shemirani

Proper planning for the response phase of humanitarian relief can significantly prevent many financial and human losses. To this aim, a multi-objective optimization model is…

Abstract

Purpose

Proper planning for the response phase of humanitarian relief can significantly prevent many financial and human losses. To this aim, a multi-objective optimization model is proposed in this paper that considers different types of injured people, different vehicles with determining capacities and multi-period logistic planning. This model can be updated based on new information about resources and newly identified injured people.

Design/methodology/approach

The main objective function of the proposed model in this paper is minimizing the unsatisfied prioritized injured people in the network. Besides, the total transportation activities of different types of vehicles are considered as another objective function. Therefore, these objectives are optimized hierarchically in the proposed model using the Lexicographic method. This method finds the best value for the first objective function. Then, it tries to optimize transportation activities as the second objective function while maintaining the optimality of the first objective function.

Findings

The performances of the proposed model were analyzed in different cases and its robust approach for different problems was shown within the framework of a case study. Besides, the sensitivity analysis of results shows the logical behavior of the proposed model against various factors.

Practical implications

The proposed methodology can be applied to find the best response plan for all crises.

Originality/value

In this paper, we have tried to use a multi-objective optimization model to guide and correct response programs to deal with the occurred crisis. This is important because it can help emergency managers to improve their plans.

Details

Journal of Humanitarian Logistics and Supply Chain Management, vol. 12 no. 1
Type: Research Article
ISSN: 2042-6747

Keywords

Article
Publication date: 1 March 2023

Hossein Shakibaei, Mohammad Reza Farhadi-Ramin, Mohammad Alipour-Vaezi, Amir Aghsami and Masoud Rabbani

Every day, small and big incidents happen all over the world, and given the human, financial and spiritual damage they cause, proper planning should be sought to deal with them so…

Abstract

Purpose

Every day, small and big incidents happen all over the world, and given the human, financial and spiritual damage they cause, proper planning should be sought to deal with them so they can be appropriately managed in times of crisis. This study aims to examine humanitarian supply chain models.

Design/methodology/approach

A new model is developed to pursue the necessary relations in an optimal way that will minimize human, financial and moral losses. In this developed model, in order to optimize the problem and minimize the amount of human and financial losses, the following subjects have been applied: magnitude of the areas in which an accident may occur as obtained by multiple attribute decision-making methods, the distances between relief centers, the number of available rescuers, the number of rescuers required and the risk level of each patient which is determined using previous data and machine learning (ML) algorithms.

Findings

For this purpose, a case study in the east of Tehran has been conducted. According to the results obtained from the algorithms, problem modeling and case study, the accuracy of the proposed model is evaluated very well.

Originality/value

Obtaining each injured person's priority using ML techniques and each area's importance or risk level, besides developing a bi-objective mathematical model and using multiple attribute decision-making methods, make this study unique among very few studies that concern ML in the humanitarian supply chain. Moreover, the findings validate the results and the model's functionality very well.

Abstract

Details

The Handbook of Road Safety Measures
Type: Book
ISBN: 978-1-84855-250-0

Article
Publication date: 1 January 1979

In order to succeed in an action under the Equal Pay Act 1970, should the woman and the man be employed by the same employer on like work at the same time or would the woman still…

Abstract

In order to succeed in an action under the Equal Pay Act 1970, should the woman and the man be employed by the same employer on like work at the same time or would the woman still be covered by the Act if she were employed on like work in succession to the man? This is the question which had to be solved in Macarthys Ltd v. Smith. Unfortunately it was not. Their Lordships interpreted the relevant section in different ways and since Article 119 of the Treaty of Rome was also subject to different interpretations, the case has been referred to the European Court of Justice.

Details

Managerial Law, vol. 22 no. 1
Type: Research Article
ISSN: 0309-0558

Abstract

Details

The Handbook of Road Safety Measures
Type: Book
ISBN: 978-1-84855-250-0

Article
Publication date: 1 January 1978

The Equal Pay Act 1970 (which came into operation on 29 December 1975) provides for an “equality clause” to be written into all contracts of employment. S.1(2) (a) of the 1970 Act…

1438

Abstract

The Equal Pay Act 1970 (which came into operation on 29 December 1975) provides for an “equality clause” to be written into all contracts of employment. S.1(2) (a) of the 1970 Act (which has been amended by the Sex Discrimination Act 1975) provides:

Details

Managerial Law, vol. 21 no. 1
Type: Research Article
ISSN: 0309-0558

Article
Publication date: 10 August 2018

Seyed Mahdi Shavarani and Bela Vizvari

The purpose of this paper is to deal with the transportation of a high number of injured people after a disaster in a highly populated large area. Each patient should be delivered…

Abstract

Purpose

The purpose of this paper is to deal with the transportation of a high number of injured people after a disaster in a highly populated large area. Each patient should be delivered to the hospital before the specific deadline to survive. The objective of the study is to maximize the survival rate of patients by proper assignment of existing emergency vehicles to hospitals and efficient generation of vehicle routes.

Design/methodology/approach

The concepts of non-fixed multiple depot pickup and delivery vehicle routing problem (MDPDVRP) is utilized to capture an image of the problem encountered in real life. Due to NP-hardness of the problem, a hybrid genetic algorithm (GA) is proposed as the solution method. The performance of the developed algorithm is investigated through a case study.

Findings

The proposed hybrid model outperforms the traditional GA and also is significantly superior compared to the nearest neighbor assignment. The required time for running the algorithm on a large-scale problem fits well into emergency distribution and the promptness required for humanitarian relief systems.

Originality/value

This paper investigates the efficient assignment of emergency vehicles to patients and their routing in a way that is most appropriate for the problem at hand.

Details

Journal of Humanitarian Logistics and Supply Chain Management, vol. 8 no. 2
Type: Research Article
ISSN: 2042-6747

Keywords

Content available
Article
Publication date: 1 May 2003

434

Abstract

Details

Disaster Prevention and Management: An International Journal, vol. 12 no. 2
Type: Research Article
ISSN: 0965-3562

Content available
Article
Publication date: 1 October 2006

797

Abstract

Details

Disaster Prevention and Management: An International Journal, vol. 15 no. 5
Type: Research Article
ISSN: 0965-3562

1 – 10 of over 1000