Search results

1 – 10 of over 6000
Book part
Publication date: 9 November 2023

Dan Irving

This chapter offers an autotheoretical account of my experiences as a trans man training for my first amateur bout – one that has yet to come but borne out of a never-ending…

Abstract

This chapter offers an autotheoretical account of my experiences as a trans man training for my first amateur bout – one that has yet to come but borne out of a never-ending fight. My chapter is in conversation with autobiography (McBee, 2018), journalistic (Oates, 2006) and ethnographical scholarship addressing the intricacies of pugilistic violence as a response to systemic gender, racial, sexual and economic oppression (Beauchez, 2017; Rutter, 2007).

Boxing draws fighters from marginalized communities. As a trans man, I have fought intense ‘negative’ feelings most of my life – emotions culminating into rage. I joined an amateur boxing club in Ottawa after trying to instigate a street altercation with a stranger. Feeling out of control, I sought refuge with others who also believe fighting solves problems.

Influenced by Oates' observations that boxing is ‘primarily about being, and not giving, hurt’ (2006) and sharing McBee's experience of ‘loving those men even as I hit them in the face, and knowing that they love[] me back’ (2018), I explore boxing as intimate and affective grounds for bearing witness to the pain and injury of the other shaping their daily lives. Amateur boxing as an embodied and affective space exceeds the oft reductionist (mis)understanding of the sport as a violent spectacle of individual bravado and the emphasis scholars and the mainstream media place on the ‘heroic body’ (Woodward, 2007); instead, I offer glimpses into the healing justice as social justice that witnessing the pain, vulnerability and resilience of oneself and other boxers can provide.

Details

Trans Athletes’ Resistance
Type: Book
ISBN: 978-1-80382-364-5

Keywords

Book part
Publication date: 30 April 2024

Natalie Wall

Abstract

Details

Black Expression and White Generosity
Type: Book
ISBN: 978-1-80382-758-2

Article
Publication date: 24 May 2022

Naval Garg and Manju Mahipalan

The present study aims to explore the intergenerational differences in the virtue of appreciation. The construct of appreciation takes a broadened perspective with six dimensions…

Abstract

Purpose

The present study aims to explore the intergenerational differences in the virtue of appreciation. The construct of appreciation takes a broadened perspective with six dimensions of “have” focus, awe, ritual, present moment, loss/adversity and interpersonal appreciation. Four different generations are studied – baby boomers (above 55 years), pre-millennial or Generation X (41–55 years), millennial or Generation Y (23–39 years) and post-millennial or Generation Z (below 23 years).

Design/methodology/approach

The collected data is analyzed in two stages. First, the adaptability of the scale is examined using exploratory factor analysis, confirmatory factor analysis, reliability and validity estimates. And in the second stage, the variations in appreciation scores are explored using ANOVA and post hoc analysis.

Findings

The results reveal statistically significant intergenerational differences among four subscales of appreciation, i.e. “have” focus, awe, present moment and loss/adversity. Only one subscale of appreciation, i.e. ritual, does not vary significantly across respondents of different generations. Also, younger generations have lesser scores on subscales of appreciation than older generations. Thus, it seems that older generations are generally more appreciative than younger generations.

Originality/value

The present study, to the best of the authors’ knowledge, could be the first research that examines the variation among generations for the experience of broader construct of appreciation within the Indian context.

Details

Social Responsibility Journal, vol. 19 no. 5
Type: Research Article
ISSN: 1747-1117

Keywords

Abstract

Details

Mixed Race Life Stories
Type: Book
ISBN: 978-1-80071-049-8

Article
Publication date: 5 April 2024

Kryzelle M. Atienza, Apollo E. Malabanan, Ariel Miguel M. Aragoncillo, Carmina B. Borja, Marish S. Madlangbayan and Emel Ken D. Benito

Existing deterministic models that predict the capacity of corroded reinforced concrete (RC) beams have limited applicability because they were based on accelerated tests that…

Abstract

Purpose

Existing deterministic models that predict the capacity of corroded reinforced concrete (RC) beams have limited applicability because they were based on accelerated tests that induce general corrosion. This research gap was addressed by performing a combined numerical and statistical analysis on RC beams, subjected to natural corrosion, to achieve a much better forecast.

Design/methodology/approach

Data of 42 naturally corroded beams were collected from the literature and analyzed numerically. Four constitutive models and their combinations were considered: the elastic-semi-plastic and elastic-perfectly-plastic models for steel, and two tensile models for concrete with and without the post-cracking stresses. Meanwhile, Popovics’ model was used to describe the behavior of concrete under compression. Corrosion coefficients were developed as functions of corrosion degree and beam parameters through linear regression analysis to fit the theoretical moment capacities with test data. The performance of the coefficients derived from different combinations of constitutive laws was then compared and validated.

Findings

The results showed that the highest accuracy (R2 = 0.90) was achieved when the tensile response of concrete was modeled without the residual stresses after cracking and the steel was analyzed as an elastic-perfectly-plastic material. The proposed procedure and regression model also showed reasonable agreement with experimental data, even performing better than the current models derived from accelerated tests and traditional procedures.

Originality/value

This study presents a simple but reliable approach for quantifying the capacity of RC beams under more realistic conditions than previously reported. This method is simple and requires only a few variables to be employed. Civil engineers can use it to obtain a quick and rough estimate of the structural condition of corroding RC beams.

Details

International Journal of Structural Integrity, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1757-9864

Keywords

Abstract

Details

Time of Death
Type: Book
ISBN: 978-1-80455-006-9

Open Access
Article
Publication date: 1 June 2023

Marcin Figat and Agnieszka Kwiek

Tandem wing aircrafts belong to an unconventional configurations group, and this type of design is characterised by a strong aerodynamic coupling, which results in lower induced…

1625

Abstract

Purpose

Tandem wing aircrafts belong to an unconventional configurations group, and this type of design is characterised by a strong aerodynamic coupling, which results in lower induced drag. The purpose of this paper is to determine whether a certain trend in the wingspan impact on aircraft dynamic stability can be identified. The secondary goal was to compare the response to control of flaps placed on a front and rear wing.

Design/methodology/approach

The aerodynamic data and control derivatives were obtained from the computational fluid dynamics computations performed by the MGAERO software. The equations of aircraft longitudinal motion in a state space form were used. The equations were built based on the aerodynamic coefficients, stability and control derivatives. The analysis of the dynamic stability was done in the MATLAB by solving the eigenvalue problem. The response to control was computed by the step response method using MATLAB.

Findings

The results of this study showed that because of a strong aerodynamic coupling, a nonlinear relation between the wing size and aircraft dynamic stability proprieties was observed. In the case of the flap deflection, stronger oscillation was observed for the front flap.

Originality/value

Results of dynamic stability of aircraft in the tandem wing configuration can be found in the literature, but those studies show outcomes of a single configuration, while this paper presents a comprehensive investigation into the impact of wingspan on aircraft dynamic stability. The results reveal that because of a strong aerodynamic coupling, the relation between the span factor and dynamic stability is nonlinear. Also, it has been demonstrated that the configuration of two wings with the same span is not the optimal one from the aerodynamic point of view.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 9
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 27 October 2023

Jacek Mieloszyk, Andrzej Tarnowski and Tomasz Goetzendorf-Grabowski

Designing new aircraft that are state-of-the-art and beyond always requires the development of new technologies. This paper aims to present lessons learned while designing…

Abstract

Purpose

Designing new aircraft that are state-of-the-art and beyond always requires the development of new technologies. This paper aims to present lessons learned while designing, building and testing new UAVs in the configuration of the flying wing. The UAV contains a number of aerodynamic devices that are not obvious solutions and use the latest manufacturing technology achievements, such as 3D printing.

Design/methodology/approach

The design solutions were applied on an airworthy aircraft and checked during test flights. The process was first conducted on the smaller UAV, and based on the test outcomes, improvements were made and then applied on the larger version of the UAV, where they were verified.

Findings

A number of practical findings were identified. For example, the use of 3D printing technology for manufacturing integrated pressure ports, investigation of the adverse yaw effect on the flying wing configuration and the effectiveness of winglet rudders in producing yawing moment.

Practical implications

All designed devices were tested in practice on the flying aircraft. It allowed for improved aircraft performance and handling characteristics. Several of the technologies used improved the speed and quality of aerodynamic device design and manufacturing, which also influences the reliability of the aircraft.

Originality/value

The paper presents how 3D printing technology can be utilized for manufacturing of aerodynamic devices. Specially developed techniques for control surface design, which can affect adverse yaw problem and aircraft handling characteristics, were described.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 30 April 2024

Fatimah De’nan, Chong Shek Wai, Tong Teong Yen, Zafira Nur Ezzati Mustafa and Nor Salwani Hashim

Brief introduction on the importance and the need for plastic analysis methods were presented in the beginning section of this review. The plastic method for analysis was…

Abstract

Purpose

Brief introduction on the importance and the need for plastic analysis methods were presented in the beginning section of this review. The plastic method for analysis was considered to be the more advanced method of analysis because of its ability to represent the true behaviour of the steel structures. Then in the following section, a literature analysis has been carried out on the previous investigations done on steel plates, steel beams and steel frames by other authors. The behaviour of them under different types of loading were presented and are under the investigation of innovative new analysis methods.

Design/methodology/approach

Structure member connections also have the potential for plastic failure. In this study, the authors have highlighted a few topics to be discussed. The three topics in this study are T-end plate connections to a square hollow section, semi-rigid connections and cold-formed steel storage racks with spine bracings using speed-lock connections. Connection is one of the important parts of a structure that ensures the integrity of the structure. Finally, in this technical paper, the authors introduce some topics related to seismic action. Application of the Theory of Plastic Mechanism Control in seismic design is studied in the beginning. At the end, its in-depth application for moment resisting frames-eccentrically braced frames dual systems is investigated.

Findings

When this study involves the design of a plastic structure, the design criteria must involve the ultimate load rather than the yield stress. As the steel behaves in the plastic range, it means the capacity of the steel has reached the ultimate load. Ultimate load design and load factor design are the methods in the range of plastic analysis. After the steel capacity has reached beyond the yield stress, it fulfills the requirement in this method. The plastic analysis method offers a consistent and logical approach to structural analysis. It provides an economical solution in terms of steel weight, as the sections designed using this method are smaller compared with elastic design methods.

Originality/value

The plastic method is the primary approach used in the analysis and design of statically indeterminate frame structures.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 26 March 2024

Hesam Ketabdari, Amir Saedi Daryan, Nemat Hassani and Mohammad Safi

In this paper, the seismic behavior of the gusset plate moment connection (GPMC) exposed to the post-earthquake fire (PEF) is investigated.

Abstract

Purpose

In this paper, the seismic behavior of the gusset plate moment connection (GPMC) exposed to the post-earthquake fire (PEF) is investigated.

Design/methodology/approach

For this purpose, for the sake of verification, first, a numerical model is built using ABAQUS software and then exposed to earthquakes and high temperatures. Afterward, the effects of a series of parameters, such as gusset plate thickness, gap width, steel grade, vertical load value and presence of the stiffeners, are evaluated on the behavior of the connection in the PEF conditions.

Findings

Based on the results obtained from the parametric study, all parameters effectively played a role against the seismic loads, although, when exposed to fire, it was found that the vertical load value and presence of the stiffener revealed a great contribution and the other parameters could not significantly affect the connection performance. Finally, to develop the modeling and further study the performance of the connection, the 4 and 8-story frames are subjected to 11 accelerograms and 3 different fire scenarios. The findings demonstrate that high temperatures impose rotations on the structure, such that the story drifts were changed compared to the post-earthquake drift values.

Originality/value

The obtained results can be used by engineers to design the GPMC for the combined action of earthquake and fire.

Details

Journal of Structural Fire Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-2317

Keywords

1 – 10 of over 6000