Search results

1 – 10 of over 148000
Article
Publication date: 2 May 2017

Jacek Klucznik, Zbigniew Lubosny, Krzysztof Dobrzynski, Stanislaw Czapp, Robert Kowalak, Robert Trebski and Stanislaw Pokora

The paper aims to discuss problems of power and energy losses in a double-circuit overhead transmission line. It was observed from energy meters’ readings, that in such a line

Abstract

Purpose

The paper aims to discuss problems of power and energy losses in a double-circuit overhead transmission line. It was observed from energy meters’ readings, that in such a line, active power losses can be measured as “negative”. The “negative” active power losses appear when the active power injected to the circuit is lower than the active power received at the circuit end. The purpose of this paper is to explain this phenomenon.

Design/methodology/approach

Theoretical considerations based on mathematical model of the transmission line of π-type confirming that effect are presented. Power losses related to series impedance of the line and to shunt admittance are calculated. The theoretical considerations are confirmed by measurements done on the real transmission line.

Findings

The calculations allow to indicate components of the active power losses, i.e. related to electromagnetic coupling among wires of a given circuit, related to electromagnetic coupling between circuits and related to shunt capacitance asymmetry. The authors indicate the influence of the line/wires geometry on the active power losses in a double-circuit overhead transmission line.

Originality/value

Explanation of the effect of “negative” active power losses’ measurement in a double-circuit overhead transmission line is provided in this paper.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 36 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 30 September 2020

Wei Jiang, Dehua Zou, Xiao Zhou, Gan Zuo, Gao Cheng Ye and Hong Jun Li

The purpose of this study is to solve the key technical problems of the practical application of electric robots. The UHV multi-split transmission line power cable operation robot…

Abstract

Purpose

The purpose of this study is to solve the key technical problems of the practical application of electric robots. The UHV multi-split transmission line power cable operation robot is an important equipment to ensure the reliable operation of high voltage lines and is a useful exploration to realize high-quality power transmission. As the robot system platform equipment mature and operation environment gradually become more complex, the double arm coordination motion control in extreme environment becomes one of the main bottleneck for its practical in power system.

Design/methodology/approach

This paper summarizes the key technologies related to power cable robots, and aims at key technical indicators such as operation reliability, operation efficiency and operation quality in the robot’s practical process. The dynamic evolution mechanism of the robot’s mechanical configuration, the multi-physics information fusion algorithm in extreme environments, the robot’s autonomous positioning and its error compensation control, the robot’s robust motion control in extreme environments and the dual-arm force-position hybrid coordination control and the dynamic distribution and elimination mechanism of internal forces in the closed chain between robots and operating objects, all the research methods and solutions of the key technologies are proposed, respectively.

Findings

Finally, a new control architecture for power cable robots in the background of the Ubiquitous Power Internet of Things is proposed so as to manage the operation and maintenance of electric power systems. The above key technologies are a new exploration of the operation and maintenance management of EHV (Extra High Voltage) multi-split transmission lines which have laid a solid theoretical foundation for the power cable robot.

Originality/value

High voltage transmission line is the main channel of power transmission. It is an important means to improve the integration of operation and maintenance management of power system to use robot instead of manual inspection and maintenance of power line, in the promotion and application of electric robot. The authors pay attention to the practicability, and the breakthrough of key technologies of robot is the premise of the practicability of robot. In this paper, the robot operation and control in multi-task and complex scenes are studied. The research and implementation of the main key technologies, such as the dynamic evolution mechanism of robot configuration, the coupling and fusion law of multi physical fields in the extreme electric power environment, the autonomous positioning control of manipulator, the robust control of robot in the super electromagnetic field environment and the cooperative operation control of multi manipulator, are discussed.

Details

Industrial Robot: the international journal of robotics research and application, vol. 48 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 16 January 2017

Rebecca Miller, Farshid Abbasi and Javad Mohammadpour

This paper aims to focus on the design and testing of a robotic device for power line inspection and cleaning. The focus for this design is on simplicity and compactness with a…

Abstract

Purpose

This paper aims to focus on the design and testing of a robotic device for power line inspection and cleaning. The focus for this design is on simplicity and compactness with a goal to create a device for linemen and other power line workers to keep in their toolbox.

Design/methodology/approach

The prototype uses V-grooved wheels to grip the line and can pass obstacles such as splices. It is equipped with a video camera to aid in line inspection and a scrub brush to clean debris from the line. The operator controls the device remotely from a laptop through a wireless connection. The novel way in which this device moves down the power line allows compactness while still being able to overcome in-line obstacles up to a certain size.

Findings

The device has been tested on a test bed in the lab. The device is able to move down a line and expand to overcome in-line obstacles as it travels. Testing proved the mechanical feasibility and revealed new requirements for a future prototype.

Practical implications

The device can be used for power line asset management by power companies; line inspection can lead to preventative repairs, leading to less downtime.

Social implications

It stands to reduce costs related to maintenance and mitigates down time and emergency repairs.

Originality/value

Innovative features include its size, mobility and control methods. Overall, the impact of this work extends to the utility maintenance sector and beyond.

Details

Industrial Robot: An International Journal, vol. 44 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 20 June 2019

Daniel Esene Okojie, Adisa Abdul-Ganiyu Jimoh, Yskandar Hamam and Adebayo Ademola Yusuff

This paper aims to survey the need for full capacity utilisation of transmission lines in power systems network operations. It proposes a review of the N-1 security criterion that…

Abstract

Purpose

This paper aims to survey the need for full capacity utilisation of transmission lines in power systems network operations. It proposes a review of the N-1 security criterion that does not ensure reliable dispatch of optimum power flow during outage contingency. The survey aims to enlarge the network capacity utilisation to rely on the entire transmission lines network operation.

Design/methodology/approach

The paper suggests transmission line switching (TLS) approach as a viable corrective mechanism for power dispatch. The TLS process is incorporated into a constraint programming language extension optimisation solver that selects the switchable line candidates as integer variables in the mixed integer programming problem.

Findings

The paper provides a practical awareness of reserve capacity in the lines that provide network security in outage contingency. At optimum power flow dispatch, the TLS is extended to optimal transmission line switching (OTLS) that indicates optimal capacity utilisation (OCU) of the available reserve capacity (ARC) in the network lines.

Practical implications

Computational efficiency influenced the extension of the OTLS to optimal transmission switching of power flow (OTSPF). The application of OTSPF helps reduce the use of flexible AC transmission systems (FACTS) and construction of new transmission lines..

Originality/value

The paper surveys TLS efforts in network capacity utilisation. The suggested ARC fulfils the need for an index with which the dispatchable lines may be identified for the optimal capacity utilisation of transmission lines network.

Details

Journal of Engineering, Design and Technology , vol. 17 no. 5
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 13 November 2007

Jian Tang, Xiang Cui, Lei Qi, Tiebing Lu, Lin Li, Puxuan Zhu, Guang Yang and Weizhen Zhang

The purpose of this paper is to present a method to calculate the transient induced voltages along the underground pipelines and analyze the transient interference generated in…

Abstract

Purpose

The purpose of this paper is to present a method to calculate the transient induced voltages along the underground pipelines and analyze the transient interference generated in the pipelines due to the inductive coupling in the fault‐to‐ground condition of power lines in close proximity.

Design/methodology/approach

Based on finite difference‐time domain method, an improved method is proposed to calculate transient inductive interference in underground metallic pipelines due to a fault in nearby power lines. The frequency‐dependent problem in the analysis of transient interference is solved in phase domain. Compared with the traditional method, the disposal of phase‐modal transformation matrices’ frequency‐dependent characteristic is avoided and the calculation is simplified by using vector fitting approach and recursive algorithm greatly in the proposed method.

Findings

A novel improved method is proposed to calculate transient induced voltage distribution along underground metallic pipelines due to a fault in nearby power lines. Results show that the peak value of transient induced voltage at the most critical point is about 1.15 times of the magnitude in the steady state without the fault removed and the analysis of transient inductive interference is necessary in the fault‐to‐ground case of power lines.

Practical implications

In order to mitigate the interference from power lines to nearby pipelines, pipelines should be good grounded and positioned as far away from the power line as possible. In high soil resistivity areas, the common corridor should be avoided.

Originality/value

The paper presents a method to calculate the transient induced voltages along the underground pipelines and analyze the transient interference generated in the pipelines due to the inductive coupling in the fault‐to‐ground condition of nearby power lines. The proposed method is general and can also be applied to other transient interference studies such as crosstalk problems of communication networks and interference between power lines and aboveground pipelines or communication cables. Effects of various parameters upon the inductive interference generated in underground pipelines due to a fault in nearby power lines are analyzed to be a guide for controlling the inductive interference.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 26 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 15 November 2021

Sunilkumar Agrawal and Prasanta Kundu

This paper aims to propose a novel methodology for optimal voltage source converter (VSC) station installation in hybrid alternating current (AC)/direct current (DC) transmission…

Abstract

Purpose

This paper aims to propose a novel methodology for optimal voltage source converter (VSC) station installation in hybrid alternating current (AC)/direct current (DC) transmission networks.

Design/methodology/approach

In this analysis, a unified power flow model has been developed for the optimal power flow (OPF) problem for VSC-based high voltage direct current (VSC-HVDC) transmission network and solved using a particle swarm optimization (PSO) algorithm. The impact of the HVDC converter under abnormal conditions considering N-1 line outage contingency is analyzed against the congestion relief of the overall transmission network. The average loadability index is used as a severity indicator and minimized along with overall transmission line losses by replacing each AC line with an HVDC line independently.

Findings

The developed unified OPF (UOPF) model converged successfully with (PSO) algorithm. The OPF problem has satisfied the defined operational constraints of the power system, and comparative results are obtained for objective function with different HVDC test configurations represented in the paper. In addition, the impact of VSC converter location is determined on objective function value.

Originality/value

A novel methodology has been developed for the optimal installation of the converter station for the point-to-point configuration of HVDC transmission. The developed unified OPF model and methodology for selecting the AC bus for converter installation has effectively reduced congestion in transmission lines under single line outage contingency.

Article
Publication date: 9 August 2011

Ulla Isosaari

The aim of this paper is to examine health care organizations' power structures from the first‐line management perspective. What liable power structures derive from the…

3637

Abstract

Purpose

The aim of this paper is to examine health care organizations' power structures from the first‐line management perspective. What liable power structures derive from the theoretical bases of bureaucratic, professional and result based organizations, and what power type do health care organizations represent, according to the empirical data? The paper seeks to perform an analysis using Mintzberg's power configurations of instrument, closed system, meritocracy and political arena.

Design/methodology/approach

The empirical study was executed at the end of 2005 through a survey in ten Finnish hospital districts in both specialized and primary care. Respondents were all first‐line managers in the area and a sample of staff members from internal disease, surgical and psychiatric units, as well as out‐patient and primary care units. The number of respondents was 1,197 and the response percentage was 38. The data were analyzed statistically.

Findings

As a result, it can be seen that a certain kind of organization structure supports the generation of a certain power type. A bureaucratic organization generates an instrument or closed system organization, a professional organization generates meritocracy and also political arena, and a result‐based organization has a connection to political arena and meritocracy. First line managers regarded health care organizations as instruments when staff regarded them mainly as meritocracies having features of political arena. Managers felt their position to be limited by rules, whereas staff members regarded their position as having lots of space and influence potential.

Practical implications

If the organizations seek innovative and active managers at the unit level, they should change the organizational structure and redistribute the work so that there could be more space for meaningful management.

Originality/value

This research adds to the literature and gives helpful suggestions that will be of interest to those in the position of first‐line management in health care.

Details

Journal of Health Organization and Management, vol. 25 no. 4
Type: Research Article
ISSN: 1477-7266

Keywords

Article
Publication date: 16 July 2019

Wei Jiang, Meng Huai Peng, Yu Yan, Gongping Wu, An Zhang, Lianqing Yu and Hong Jun Li

In the extreme power environment of flexible transmission line, wind load, high voltage and strong electromagnetic interference, the motion performance of the robot manipulator is…

Abstract

Purpose

In the extreme power environment of flexible transmission line, wind load, high voltage and strong electromagnetic interference, the motion performance of the robot manipulator is strongly affected by the extreme environment. Therefore, this study aims to improve the manipulator motion control performance of power cable maintenance robot and effectively reduce the influence of specific operation environment on the robot manipulator motion posture.

Design/methodology/approach

The mathematical model under three typical operation conditions, namely, flexible line, wind load and strong electromagnetic field have been established, correspondingly the mapping relationship between different environment parameters and robot operation conditions are also given. Based on the nonlinear approximation feature of neural network, a back propagation (BP) neural network is adopted to solve the posture control problems. The power cable line sag, robot tile angle caused by wind load and spatial field strength are the input signals of the BP network in the robot motion posture control method.

Findings

Through the training and learning of the BP network, the output control variables are used to compensate the actual robot operation posture. The simulation experiment verifies the effectiveness of the proposed algorithm, and compared with the conventional proportional integral differential (PID) control, the method has high real-time performance and sound stability. Finally, field operation experiments further validate the engineering feasibility of the control method, and at the same time, the proposed control method has the remarkable characteristics of sound universality, adaptability and easy expansion.

Originality/value

A multi-layer control architecture which is suitable for smart grid platform maintenance is proposed and a robot system platform for network operation and maintenance management is constructed. The human–machine–environment coordination and integration mode and intelligent power system management platform can be realized which greatly improves the intelligence of power system management. Mathematical models of the robot under three typical operation conditions of flexible wire wind load and strong electromagnetic field are established and the mapping relationship between different environmental parameters and the robot operation conditions is given. Through the non-linear approximation characteristics of BP network, the control variables of the robot joints can be obtained and the influence of extreme environment on the robot posture can be compensated. The simulation results of MATLAB show that the control algorithm can effectively restrain the influence of uncertain factors such as flexible environment, wind load and strong electromagnetic field on the robot posture. It satisfied the design requirements of fast response, high tracking accuracy and good stability of the control system. Field operation tests further verify the engineering practicability of the algorithm.

Details

Industrial Robot: the international journal of robotics research and application, vol. 46 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 14 August 2021

Hamed Fasihi Pour Parizi, Saeed Seyedtabaii and Mahdi Akhbari

The purpose of this study is to develop an algorithm to accurately detect faults in series capacitor compensated (SCC) power transmission lines. The line fault must be…

Abstract

Purpose

The purpose of this study is to develop an algorithm to accurately detect faults in series capacitor compensated (SCC) power transmission lines. The line fault must be distinguished from stable power swing, compensating unit malfunction and defects on other lines sharing the same bus (external faults).

Design/methodology/approach

In this regard, an effective fault feature extractor based on the cumulative sum (CUSUM) of the amplified second harmonic of the phase currents is suggested. The features are then applied to an artificial neural network for classification. No-fault cases include stable power swing and several disturbances. Due to the independent analysis of each phase, faulty phase detection is also a by-product.

Findings

Various fault scenarios are defined, and the algorithm success rate is compared with some newly published methods. Extensive simulations performed over a single-machine infinite bus, a 3-machine, 9-bus and the large-scale New England IEEE 39-Bus networks all indicate that the proposed algorithm can trip the faulty line more quickly and accurately than the contestant algorithms.

Originality/value

Suggestion of a new algorithm based on the CUSUM of the amplified second harmonic of the phase current for the fault feature extraction that is able to isolate the transmission line internal faults from stable poser swing, line compensating unit malfunction and faults on the adjacent lines connected to the same bus.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 40 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 5 September 2016

Uma Velayutham, Lakshmi Ponnusamy and Gomathi Venugopal

The purpose of this paper is to optimally locate and size the FACTS device, namely, interline power flow controller in order to minimize the total cost and relieve congestion in a…

Abstract

Purpose

The purpose of this paper is to optimally locate and size the FACTS device, namely, interline power flow controller in order to minimize the total cost and relieve congestion in a power system. This security analysis helps independent system operator (ISO) to have a better planning and market clearing criteria during any operating state of the system.

Design/methodology/approach

A multi-objective optimization problem has been developed including real power performance index (RPPI) and expected security cost (ESC). A security constrained optimal power flow has been developed as expected security cost optimal power flow problem which gives the probabilities of operating the system in all possible pre-contingency and post-contingency states subjected to various equality and inequality constraints. Maximizing social welfare is the objective function considered for normal state, while minimizing compensations for generations rescheduling and maximizing social welfare are the objectives in case of contingency states. The proposed work is viewed as a two level problem wherein the upper-level problem is to optimally locate IPFC using RPPI and the lower-level problem is to minimize the ESC subjected to various system constraints. Both upper-level and lower-level problem are solved using particle swarm optimization and The performance of the proposed algorithm is tested under severe line outages and has been validated using IEEE 30 bus system.

Findings

The proposed methodology shows that IPFC controls the power flows in the network without generation rescheduling or topological changes and thus improves the performance of the system. It is found that the benefit achieved in the ESC due to the installation of IPFC is greater than the annual investment cost of the device. ISO cannot achieve minimum total system cost by merely rescheduling generators. Instead of rescheduling, FACTS devices can be used for compensation by achieving minimum cost. IPFC can be used to compensate the congested lines and transfer cheaper power from generators to consumers.

Originality/value

Operational reliability, financial profitability and efficient utilization of the existing transmission system infrastructure has been achieved using single FACTS device. Instead of using multiple FATCS devices, if a single FACTS device like IPFC which itself can compensate several transmission lines is used, then in addition to the facility for independently controlled reactive (series) compensation of each individual line, it provides a capability to directly transfer real power between the compensated lines. Hence an attempt has been made in this paper to incorporate IPFC for relieving congestion in a deregulated environment. However, no previous researches have considered incorporating compensation of multi-transmission line using single IPFC in minimizing ESC. Thus, in this paper, the authors indicate how much the ESC is reduced by installing IPFC.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 35 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of over 148000