Search results

1 – 10 of 62
Article
Publication date: 26 February 2024

Varsha Vihan, V.P. Singh, Pramila Umaraw, Akhilesh Kumar Verma, Shardanand Verma and Chirag Singh

The purpose of this study is to investigate the impact of integrating “Licorice powder” into curd balls on their storage stability under refrigeration conditions. Through this…

Abstract

Purpose

The purpose of this study is to investigate the impact of integrating “Licorice powder” into curd balls on their storage stability under refrigeration conditions. Through this examination, this study aims to evaluate the potential effects of licorice powder on extending the shelf life, maintaining quality attributes and preserving the overall stability of curd balls when stored at refrigeration temperatures.

Design/methodology/approach

Licorice powder, in varying quantities (1%, 2% and 3%), was incorporated into curd balls alongside a control group lacking licorice (0%). These batches were subsequently stored for 25 days under refrigeration at a temperature of 4 ± 1ºC, using aerobic packaging conditions. During this storage period, the samples were regularly monitored and analyzed for various parameters to assess changes in their properties and qualities.

Findings

The findings indicated that in the treatment groups, pH and titratable acidity were notably lower than those in the control group (p = 0.05). Curd balls enriched with licorice powder exhibited significantly higher levels of 2, 2-diphenyl-1-picrylhydrazyl, 2-2-azinobis-3ethylbenthiazoline-6-sulphonic acid and total phenolic contents compared to the control (p = 0.05). Furthermore, curd balls containing licorice powder displayed notably lower levels of peroxide, thiobarbituric acid reactive substances and free fatty acids in comparison to the control (p = 0.05). Among all samples, T3 (3%) demonstrated significantly less microbial growth (p = 0.05) than the other groups. Conversely, the sensory panel rated T2 significantly higher than T3 (p = 0.05).

Originality/value

The investigation highlights that curd balls enriched with 2.0% licorice powder demonstrated significant efficacy in preventing the deterioration of physicochemical attributes, enhancing antioxidant capacity, restraining lipid oxidation, curbing microbial growth and ultimately exhibiting the most favorable organoleptic properties among the tested variations. This finding underscores the potential of incorporating 2.0% licorice powder as an effective agent for bolstering the storage stability and overall quality of curd balls during refrigerated storage.

Details

Nutrition & Food Science , vol. 54 no. 3
Type: Research Article
ISSN: 0034-6659

Keywords

Open Access
Article
Publication date: 9 February 2024

Martin Novák, Berenika Hausnerova, Vladimir Pata and Daniel Sanetrnik

This study aims to enhance merging of additive manufacturing (AM) techniques with powder injection molding (PIM). In this way, the prototypes could be 3D-printed and mass…

Abstract

Purpose

This study aims to enhance merging of additive manufacturing (AM) techniques with powder injection molding (PIM). In this way, the prototypes could be 3D-printed and mass production implemented using PIM. Thus, the surface properties and mechanical performance of parts produced using powder/polymer binder feedstocks [material extrusion (MEX) and PIM] were investigated and compared with powder manufacturing based on direct metal laser sintering (DMLS).

Design/methodology/approach

PIM parts were manufactured from 17-4PH stainless steel PIM-quality powder and powder intended for powder bed fusion compounded with a recently developed environmentally benign binder. Rheological data obtained at the relevant temperatures were used to set up the process parameters of injection molding. The tensile and yield strengths as well as the strain at break were determined for PIM sintered parts and compared to those produced using MEX and DMLS. Surface properties were evaluated through a 3D scanner and analyzed with advanced statistical tools.

Findings

Advanced statistical analyses of the surface properties showed the proximity between the surfaces created via PIM and MEX. The tensile and yield strengths, as well as the strain at break, suggested that DMLS provides sintered samples with the highest strength and ductility; however, PIM parts made from environmentally benign feedstock may successfully compete with this manufacturing route.

Originality/value

This study addresses the issues connected to the merging of two environmentally efficient processing routes. The literature survey included has shown that there is so far no study comparing AM and PIM techniques systematically on the fixed part shape and dimensions using advanced statistical tools to derive the proximity of the investigated processing routes.

Article
Publication date: 26 March 2024

Haichao Wang, Xiaoqiang Liu, Zhanjiang Li, Li Chen, Pinqiang Dai and Qunhua Tang

The purpose of this paper is to study the high temperature oxidation behavior of Ti and C-added FeCoCrNiMn high entropy alloys (HEAs).

Abstract

Purpose

The purpose of this paper is to study the high temperature oxidation behavior of Ti and C-added FeCoCrNiMn high entropy alloys (HEAs).

Design/methodology/approach

Cyclic oxidation method was used to obtain the oxidation kinetic profile and oxidation rate. The microstructures of the surface and cross section of the samples after oxidation were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM).

Findings

The results show that the microstructure of the alloy mainly consisted of FCC (Face-centered Cubic Structure) main phase and carbides (M7C3, M23C6 and TiC). With the increase of Ti and C content, the microhardness, strength and oxidation resistance of the alloy were effectively improved. After oxidation at a constant temperature of 800 °C for 100 h, the preferential oxidation of chromium in the chromium carbide determined the early formation of dense chromium oxide layers compared to the HEAs substrate, resulting in the optimal oxidation resistance of the TC30 alloy.

Originality/value

More precipitated CrC can preferentially oxidize and rapidly form a dense Cr2O3 layer early in the oxidation, which will slow down the further oxidation of the alloy.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 3
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 29 February 2024

Surbhi Kapoor, Amarjeet Kaur, Vikas Kumar and Monika Choudhary

This paper aims to assess the impact of incorporating foxnut powder (FP) into bakery products to evaluate their effect on product quality and nutritional characteristics.

Abstract

Purpose

This paper aims to assess the impact of incorporating foxnut powder (FP) into bakery products to evaluate their effect on product quality and nutritional characteristics.

Design/methodology/approach

Samples of refined flour (control) and refined wheat flour with varying levels of FP were prepared for each bakery item. Sensory evaluations using a nine-point hedonic scale were conducted. Different concentrations of FP (20% for cakes, 12.5% for bread and 12.5% for doughnuts) were tested to achieve sensory acceptability.

Findings

The addition of FP at specified concentrations achieved sensory acceptability in the tested bakery items, significantly impacting overall acceptability. Incorporating FP led to textural attribute alterations, including increased hardness, gumminess and chewiness, alongside reduced cohesiveness and elasticity. Color properties were influenced, affecting lightness, redness and yellowness of the bakery items. Proximate composition analysis highlighted shifts in moisture, protein, fiber, fat and ash content between control and accepted samples. Mineral content analysis revealed notable differences in calcium, potassium, iron, magnesium and sodium between control and accepted samples.

Originality/value

These findings demonstrate the potential of FP to enhance bakery products, offering promising industrial applications in producing nutritionally enriched and visually appealing baked products.

Details

Nutrition & Food Science , vol. 54 no. 3
Type: Research Article
ISSN: 0034-6659

Keywords

Article
Publication date: 25 April 2024

Saadet Güler, Ahmet Yavaş, Berk Özler and Ahmet Çagri Kilinç

Three-dimensional (3D) printing is popular for many applications including the production of photocatalysts. This paper aims to focus on developing of 3D-printed…

Abstract

Purpose

Three-dimensional (3D) printing is popular for many applications including the production of photocatalysts. This paper aims to focus on developing of 3D-printed photocatalyst-nano composite lattice structure. Digital light processing (DLP) 3D printing of photocatalyst composites was performed using photosensitive resin mixed with 0.5% Wt. of TiO2 powder and varying amounts (0.025% Wt. to 0.2% Wt.) of graphene nanoplatelet powder. The photocatalytic efficiency of DLP 3D-printed photocatalyst TiO2 composite was investigated, and the effects of nano graphite powder incorporation on the photocatalytic activity, thermal and mechanical properties were investigated.

Design/methodology/approach

Methods involve 3D computer-aided design modeling, printing parameters and comprehensive characterization techniques such as structural equation modeling, X-ray diffraction, thermogravimetric analysis, Fourier-transform infrared (FTIR) and mechanical testing.

Findings

Results highlight successful dispersion and characteristics of TiO2 and graphene nanoplatelet (GNP) powders, intricate designs of 3D-printed lattice structures, and the influence of GNPs on thermal behavior and mechanical properties.

Originality/value

The study suggests applicability in wastewater treatment and environmental remediation, showcasing the adaptability of 3 D printing in designing effective photocatalysts. Future research should focus on practical applications and the long-term durability of these 3D-printed composites.

Graphical abstract

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 6 May 2024

Ting Li, Junmiao Wu, Junhai Wang, Yunwu Yu, Xinran Li, Xiaoyi Wei and Lixiu Zhang

The purpose of this article is to prepare graphene/polyimide composite materials for use as bearing cage materials, improving the friction and wear performance of bearing cages.

Abstract

Purpose

The purpose of this article is to prepare graphene/polyimide composite materials for use as bearing cage materials, improving the friction and wear performance of bearing cages.

Design/methodology/approach

The oil absorption and discharge tests were conducted to evaluate the oil content properties of the materials, while the mechanical properties were analyzed through cross-sectional morphology examination. Investigation into the tribological behavior and wear mechanisms encompassed characterization and analysis of wear trace morphology in PPI-based materials. Consequently, the influence of varied graphene nanoplatelets (GN) concentrations on the oil content, mechanical and tribological properties of PPI-based materials was elucidated.

Findings

The composites exhibit excellent oil-containing properties due to the increased porosity of PPI-GN composites. The robust formation of covalent bonds between GN and PPI amplifies the adhesive potency of the PPI-GN composites, thereby inducing a substantial enhancement in impact strength. Notably, the PPI-GN composites showed enhanced lubrication properties compared to PPI, which was particularly evident at a GN content of 0.5 Wt.%, as evidenced by the minimization of the average coefficient of friction and the width of the abrasion marks.

Practical implications

This paper includes implications for elucidating the wear mechanism of the polyimide composites under frictional wear conditions and then to guide the optimization of oil content and tribological properties of polyimide bearing cage materials.

Originality/value

In this paper, homogeneously dispersed PPI-GN composites were effectively synthesized by introducing GN into a polyimide matrix through in situ polymerization, and the lubrication mechanism of the PPI composites was compared with that of the PPI-GN composites to illustrate the composites’ superiority.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-12-2023-0415

Details

Industrial Lubrication and Tribology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 17 April 2024

Bingyi Li, Songtao Qu and Gong Zhang

This study aims to focus on the surface mount technology (SMT) mass production process of Sn-9Zn-2.5Bi-1.5In solder. It explores it with some components that will provide…

Abstract

Purpose

This study aims to focus on the surface mount technology (SMT) mass production process of Sn-9Zn-2.5Bi-1.5In solder. It explores it with some components that will provide theoretical support for the industrial SMT application of Sn-Zn solder.

Design/methodology/approach

This study evaluates the properties of solder pastes and selects a more appropriate reflow parameter by comparing the microstructure of solder joints with different reflow soldering profile parameters. The aim is to provide an economical and reliable process for SMT production in the industry.

Findings

Solder paste wettability and solder ball testing in a nitrogen environment with an oxygen content of 3,000 ppm meet the requirements of industrial production. The printing performance of the solder paste is good and can achieve a printing rate of 100–160 mm/s. When soldering with a traditional stepped reflow soldering profile, air bubbles are generated on the surface of the solder joint, and there are many voids and defects in the solder joint. A linear reflow soldering profile reduces the residence time below the melting point of the solder paste (approximately 110 s). This reduces the time the zinc is oxidized, reducing solder joint defects. The joint strength of tin-zinc joints soldered with the optimized reflow parameters is close to that of Sn-58Bi and SAC305, with high joint strength.

Originality/value

This study attempts to industrialize the application of Sn-Zn solder and solves the problem that Sn-Zn solder paste is prone to be oxidized in the application and obtains the SMT process parameters suitable for Sn-9Zn-2.5Bi-1.5In solder.

Details

Soldering & Surface Mount Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 5 April 2024

Rahul Soni, Madhvi Sharma, Ponappa K. and Puneet Tandon

In pursuit of affordable and nutrient-rich food alternatives, the symbiotic culture of bacteria and yeast (SCOBY) emerged as a selected food ink for 3D printing. The purpose of…

Abstract

Purpose

In pursuit of affordable and nutrient-rich food alternatives, the symbiotic culture of bacteria and yeast (SCOBY) emerged as a selected food ink for 3D printing. The purpose of this paper is to harness SCOBY’s potential to create cost-effective and nourishing food options using the innovative technique of 3D printing.

Design/methodology/approach

This work presents a comparative analysis of the printability of SCOBY with blends of wheat flour, with a focus on the optimization of process variables such as printing composition, nozzle height, nozzle diameter, printing speed, extrusion motor speed and extrusion rate. Extensive research was carried out to explore the diverse physical, mechanical and rheological properties of food ink.

Findings

Among the ratios tested, SCOBY, with SCOBY:wheat flour ratio at 1:0.33 exhibited the highest precision and layer definition when 3D printed at 50 and 60 mm/s printing speeds, 180 rpm motor speed and 0.8 mm nozzle with a 0.005 cm3/s extrusion rate, with minimum alteration in colour.

Originality/value

Food layered manufacturing (FLM) is a novel concept that uses a specialized printer to fabricate edible objects by layering edible materials, such as chocolate, confectionaries and pureed fruits and vegetables. FLM is a disruptive technology that enables the creation of personalized and texture-tailored foods, incorporating desired nutritional values and food quality, using a variety of ingredients and additions. This research highlights the potential of SCOBY as a viable material for 3D food printing applications.

Details

Rapid Prototyping Journal, vol. 30 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 21 February 2024

Seo-Hyeon Oh and Keun Park

Additive Manufacturing (AM) conventionally necessitates an intermediary slicing procedure using the standard tessellation language (STL) data, which can be computationally…

Abstract

Purpose

Additive Manufacturing (AM) conventionally necessitates an intermediary slicing procedure using the standard tessellation language (STL) data, which can be computationally burdensome, especially for intricate microcellular architectures. This study aims to propose a direct slicing method tailored for digital light processing-type AM processes for the efficient generation of slicing data for microcellular structures.

Design/methodology/approach

The authors proposed a direct slicing method designed for microcellular structures, encompassing micro-lattice and triply periodic minimal surface (TPMS) structures. The sliced data of these structures were represented mathematically and then convert into 2D monochromatic images, bypassing the time-consuming slicing procedures required by 3D STL data. The efficiency of the proposed method was validated through data preparations for lattice-based nasopharyngeal swabs and TPMS-based ellipsoid components. Furthermore, its adaptability was highlighted by incorporating 2D images of additional features, eliminating the requirement for complex 3D Boolean operations.

Findings

The direct slicing method offered significant benefits upon implementation for microcellular structures. For lattice-based nasopharyngeal swabs, it reduced data size by a factor of 1/300 and data preparation time by a factor of 1/8. Similarly, for TPMS-based ellipsoid components, it reduced data size by a factor of 1/60 and preparation time by a factor of 1/16.

Originality/value

The direct slicing method allows for bypasses the computational burdens associated with traditional indirect slicing from 3D STL data, by directly translating complex cellular structures into 2D sliced images. This method not only reduces data volume and processing time significantly but also demonstrates the versatility of sliced data preparation by integrating supplementary features using 2D operations.

Article
Publication date: 8 March 2024

Yuchun Huang, Haishu Ma, Yubo Meng and Yazhou Mao

This paper aims to study the synergistic lubrication effects of Sn–Ag–Cu and MXene–Ti3C2 to improve the tribological properties of M50 bearing steel with microporous channels.

Abstract

Purpose

This paper aims to study the synergistic lubrication effects of Sn–Ag–Cu and MXene–Ti3C2 to improve the tribological properties of M50 bearing steel with microporous channels.

Design/methodology/approach

M50 matrix self-lubricating composites (MMSC) were designed and prepared by filling Sn–Ag–Cu and MXene–Ti3C2 in the microporous channels of M50 bearing steel. The tribology performance testing of as-prepared samples was executed with a multifunction tribometer. The optimum hole size and lubricant content, as well as self-lubricating mechanism of MMSC, were studied.

Findings

The tribological properties of MMSC are strongly dependent on the synergistic lubrication effect of MXene–Ti3C2 and Sn–Ag–Cu. When the hole size of microchannel is 1 mm and the content of MXene–Ti3C2 in mixed lubricant is 4 wt.%, MMSC shows the lowest friction coefficient and wear rate. The Sn–Ag–Cu and MXene–Ti3C2 are extruded from the microporous channels and spread to the friction interface, and a relatively complete lubricating film is formed at the friction interface. Meanwhile, the synergistic lubrication of Sn–Ag–Cu and MXene–Ti3C2 can improve the stability of the lubricating film, thus the excellent tribological property of MMSC is obtained.

Originality/value

The results help in deep understanding of the synergistic lubrication effects of Sn–Ag–Cu and MXene–Ti3C2 on the tribological properties of M50 bearing steel. This work also provides a useful reference for the tribological design of mechanical components by combining surface texture with solid lubrication.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-12-2023-0381/

Details

Industrial Lubrication and Tribology, vol. 76 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of 62