Search results

1 – 10 of over 1000
Article
Publication date: 10 July 2024

Mohammad Ghalambaz, Mikhail A. Sheremet, Mohammed Arshad Khan, Zehba Raizah and Jana Shafi

This study aims to explore the evolving field of physics-informed neural networks (PINNs) through an analysis of 996 records retrieved from the Web of Science (WoS) database from…

Abstract

Purpose

This study aims to explore the evolving field of physics-informed neural networks (PINNs) through an analysis of 996 records retrieved from the Web of Science (WoS) database from 2019 to 2022.

Design/methodology/approach

WoS database was analyzed for PINNs using an inhouse python code. The author’s collaborations, most contributing institutes, countries and journals were identified. The trends and application categories were also analyzed.

Findings

The papers were classified into seven key domains: Fluid Dynamics and computational fluid dynamics (CFD); Mechanics and Material Science; Electromagnetism and Wave Propagation; Biomedical Engineering and Biophysics; Quantum Mechanics and Physics; Renewable Energy and Power Systems; and Astrophysics and Cosmology. Fluid Dynamics and CFD emerged as the primary focus, accounting for 69.3% of total publications and witnessing exponential growth from 22 papers in 2019 to 366 in 2022. Mechanics and Material Science followed, with an impressive growth trajectory from 3 to 65 papers within the same period. The study also underscored the rising interest in PINNs across diverse fields such as Biomedical Engineering and Biophysics, and Renewable Energy and Power Systems. Furthermore, the focus of the most active countries within each application category was examined, revealing, for instance, the USA’s significant contribution to Fluid Dynamics and CFD with 319 papers and to Mechanics and Material Science with 66 papers.

Originality/value

This analysis illuminates the rapidly expanding role of PINNs in tackling complex scientific problems and highlights its potential for future research across diverse domains.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 1 November 2023

Hamed Abdelreheem Ead

The purpose of the paper is to showcase the significant achievements of Egypt's scientists in the 20th century across various fields of study such as medicine, physics, chemistry…

1348

Abstract

Purpose

The purpose of the paper is to showcase the significant achievements of Egypt's scientists in the 20th century across various fields of study such as medicine, physics, chemistry, biology, math, geology, astronomy and engineering. The paper highlights the struggles and successes of these scientists, as well as the cultural, social and political factors that influenced their lives and work. The aim is to inspire young people to pursue careers in science and make their own contributions to society by presenting these scientists as role models for hard work and dedication. Ultimately, the paper seeks to promote the importance of science and its impact on society.

Design/methodology/approach

The purpose of this review is to present the scientific biographies of Egypt's most distinguished scientists, primarily in the field of Natural Sciences, in a balanced and comprehensive manner. The work is objective, honest and abstract, avoiding any bias or exaggeration. The author provides a clear and concise methodology, including a brief introduction to the scientist and their field of study, an explanation of their major contributions, the impact of their work on society, any challenges or obstacles faced during their career and their lasting legacy. The aim is to showcase the important achievements of these scientists, their impact on their respective fields and to inspire future generations to pursue scientific careers.

Findings

The group of outstanding scientists in 20th century Egypt were shaped by various factors, including familial upbringing, education, society, political and cultural atmosphere and state support for scientific research. These scientists made significant contributions to various academic disciplines, including medicine, physics, chemistry, biology, mathematics and engineering. Their impact on their communities and cultures has received international acclaim, making them role models for future generations of scientists and researchers. The history of these scientists highlights the importance of educational investments and supporting scientific research to foster innovation and social progress. The encyclopedia serves as a useful tool for students, instructors and education professionals, preserving Egypt's scientific heritage and honouring the scientists' outstanding accomplishments.

Research limitations/implications

The encyclopedia preserves Egypt's scientific heritage, which has been overlooked for political or other reasons. It is a useful tool for a variety of readers, including students, instructors and education professionals, and it offers insights into universally relevant scientific success factors as well as scientific research methodologies. The encyclopedia honours the outstanding scientific accomplishments of Egyptian researchers and their contributions to the world's scientific community.

Practical implications

The practical implications of this paper are several. First, it highlights the importance of education, family upbringing and societal support for scientific research in fostering innovation and social progress. Second, it underscores the need for continued funding and support for scientific research to maintain and build upon the accomplishments of past generations of scientists. Third, it encourages young people to pursue scientific careers and make their own contributions to society. Fourth, it preserves the scientific heritage of Egypt and honors the contributions of its outstanding scientists. Finally, it serves as a useful tool for students, instructors and education professionals seeking to understand the factors underlying scientific success and research methodologies.

Social implications

The social implications of the paper include promoting national pride and cultural identity, raising awareness of the importance of education and scientific research in driving social progress, inspiring future generations of scientists and researchers, reducing socioeconomic disparities and emphasizing the role of society, politics and culture in shaping scientific researchers' personalities and interests.

Originality/value

The paper's originality/value lies in its comprehensive documentation of the scientific biographies of Egypt's most prominent scientists in the 20th century, providing unique insights into the factors that contributed to their development and their impact across various academic disciplines. It preserves Egypt's scientific heritage and inspires future generations of scientists and researchers through the promotion of educational investments and scientific research. The encyclopedia serves as a useful tool for education professionals seeking to understand scientific success factors and research methodologies, emphasizing the importance of supportive and inclusive environments for scientific development.

Details

Journal of Humanities and Applied Social Sciences, vol. 6 no. 2
Type: Research Article
ISSN: 2632-279X

Keywords

Article
Publication date: 28 December 2023

Weixin Zhang, Zhao Liu, Yu Song, Yixuan Lu and Zhenping Feng

To improve the speed and accuracy of turbine blade film cooling design process, the most advanced deep learning models were introduced into this study to investigate the most…

Abstract

Purpose

To improve the speed and accuracy of turbine blade film cooling design process, the most advanced deep learning models were introduced into this study to investigate the most suitable define for prediction work. This paper aims to create a generative surrogate model that can be applied on multi-objective optimization problems.

Design/methodology/approach

The latest backbone in the field of computer vision (Swin-Transformer, 2021) was introduced and improved as the surrogate function for prediction of the multi-physics field distribution (film cooling effectiveness, pressure, density and velocity). The basic samples were generated by Latin hypercube sampling method and the numerical method adopt for the calculation was validated experimentally at first. The training and testing samples were calculated at experimental conditions. At last, the surrogate model predicted results were verified by experiment in a linear cascade.

Findings

The results indicated that comparing with the Multi-Scale Pix2Pix Model, the Swin-Transformer U-Net model presented higher accuracy and computing speed on the prediction of contour results. The computation time for each step of the Swin-Transformer U-Net model is one-third of the original model, especially in the case of multi-physics field prediction. The correlation index reached more than 99.2% and the first-order error was lower than 0.3% for multi-physics field. The predictions of the data-driven surrogate model are consistent with the predictions of the computational fluid dynamics results, and both are very close to the experimental results. The application of the Swin-Transformer model on enlarging the different structure samples will reduce the cost of numerical calculations as well as experiments.

Research limitations/implications

The number of U-Net layers and sample scales has a proper relationship according to equation (8). Too many layers of U-Net will lead to unnecessary nonlinear variation, whereas too few layers will lead to insufficient feature extraction. In the case of Swin-Transformer U-Net model, incorrect number of U-Net layer will reduce the prediction accuracy. The multi-scale Pix2Pix model owns higher accuracy in predicting a single physical field, but the calculation speed is too slow. The Swin-Transformer model is fast in prediction and training (nearly three times faster than multi Pix2Pix model), but the predicted contours have more noise. The neural network predicted results and numerical calculations are consistent with the experimental distribution.

Originality/value

This paper creates a generative surrogate model that can be applied on multi-objective optimization problems. The generative adversarial networks using new backbone is chosen to adjust the output from single contour to multi-physics fields, which will generate more results simultaneously than traditional surrogate models and reduce the time-cost. And it is more applicable to multi-objective spatial optimization algorithms. The Swin-Transformer surrogate model is three times faster to computation speed than the Multi Pix2Pix model. In the prediction results of multi-physics fields, the prediction results of the Swin-Transformer model are more accurate.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 July 2024

Mohammad Edalatifar, Jana Shafi, Majdi Khalid, Manuel Baro, Mikhail A. Sheremet and Mohammad Ghalambaz

This study aims to use deep neural networks (DNNs) to learn the conduction heat transfer physics and estimate temperature distribution images in a physical domain without using…

Abstract

Purpose

This study aims to use deep neural networks (DNNs) to learn the conduction heat transfer physics and estimate temperature distribution images in a physical domain without using any physical model or mathematical governing equation.

Design/methodology/approach

Two novel DNNs capable of learning the conduction heat transfer physics were defined. The first DNN (U-Net autoencoder residual network [UARN]) was designed to extract local and global features simultaneously. In the second DNN, a conditional generative adversarial network (CGAN) was used to enhance the accuracy of UARN, which is referred to as CGUARN. Then, novel loss functions, introduced based on outlier errors, were used to train the DNNs.

Findings

A UARN neural network could learn the physics of heat transfer. Within a few epochs, it reached mean and outlier errors that other DNNs could never reach after many epochs. The composite outlier-mean error as a loss function showed excellent performance in training DNNs for physical images. A UARN could excellently capture local and global features of conduction heat transfer, whereas the composite error could accurately guide DNN to extract high-level information by estimating temperature distribution images.

Originality/value

This study offers a unique approach to estimating physical information, moving from traditional mathematical and physical models to machine learning approaches. Developing novel DNNs and loss functions has shown promising results, opening up new avenues in heat transfer physics and potentially other fields.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Content available
Article
Publication date: 11 July 2024

Marcus Harmes

The purpose of this paper is to study the popular educational broadcasting of Julius Sumner Miller and its intersections with contemporary science policy and education.

Abstract

Purpose

The purpose of this paper is to study the popular educational broadcasting of Julius Sumner Miller and its intersections with contemporary science policy and education.

Design/methodology/approach

The paper draws on archival research including resources so far unused by historians of science or of broadcasting and audio-visual resources of Sumner Miller’s broadcasts on Australian, Canadian and American television. It begins by contextualising Sumner Miller as both an academic and broadcaster. The second section interprets the core points of his educational philosophy which he articulated in his written and broadcast works. The final section uses his private papers contextualised by works on the history and philosophy of science to interpret and delineate the disparity between Sumner Miller’s influence as a populariser of science and the prevailing trends in scientific policy and teaching.

Findings

This paper proposes that reconstructing the themes and recurring points he asserted in his broadcasts reveals disjunction between Sumner Miller’s high-profile successes and the contemporary trends in both science policy and science education. This paper interprets the circumstance of an internationally known and influential science populariser who was coterminous with but against the grain of the notion of “big science”. He therefore sought to popularise science precisely as it was developing in ways he disparaged.

Research limitations/implications

This paper breaks new ground by interpreting the different sources, audio-visual and written, created by and about an influential television broadcaster.

Originality/value

Although he was widely and internationally known, and the range of his influence on science communication is generally noted, Sumner Miller’s broadcasting and the themes and educational philosophy espoused in it is little researched and contextualised. This paper sharpens understanding of his influence but also his points of intersection and disjunction with scientific culture. Hitherto unused archival resources contribute to this understanding.

Details

History of Education Review, vol. 53 no. 1
Type: Research Article
ISSN: 0819-8691

Keywords

Article
Publication date: 8 May 2024

Charalampos Alexopoulos and Stuti Saxena

This paper aims to further the understanding of Open Government Data (OGD) adoption by the government by invoking two quantum physics theories – percolation theory and expander…

Abstract

Purpose

This paper aims to further the understanding of Open Government Data (OGD) adoption by the government by invoking two quantum physics theories – percolation theory and expander graph theory.

Design/methodology/approach

Extant research on the barriers to adoption and rollout of OGD is reviewed to drive home the research question for the present study. Both the theories are summarized, and lessons are derived therefrom for answering the research question.

Findings

The percolation theory solves the riddle of why the OGD initiatives find it difficult to seep across the hierarchical and geographical levels of any administrative division. The expander graph theory builds the understanding of the need for having networking among and within the key government personnel for bolstering the motivation and capacity building of the operational personnel linked with the OGD initiative. The theoretical understanding also aids in the implementation and institutionalization of OGD in general.

Originality/value

Intersectionality of domains for conducting research on any theme is always a need. Given the fact that there are innumerable challenges regarding the adoption of OGD by the governments across the world, the application of the two theories of quantum physics might solve the quandary in a befitting way.

Details

foresight, vol. 26 no. 3
Type: Research Article
ISSN: 1463-6689

Keywords

Article
Publication date: 28 May 2024

Guang-Zhi Zeng, Zheng-Wei Chen, Yi-Qing Ni and En-Ze Rui

Physics-informed neural networks (PINNs) have become a new tendency in flow simulation, because of their self-advantage of integrating both physical and monitored information of…

Abstract

Purpose

Physics-informed neural networks (PINNs) have become a new tendency in flow simulation, because of their self-advantage of integrating both physical and monitored information of fields in solving the Navier–Stokes equation and its variants. In view of the strengths of PINN, this study aims to investigate the impact of spatially embedded data distribution on the flow field results around the train in the crosswind environment reconstructed by PINN.

Design/methodology/approach

PINN can integrate data residuals with physical residuals into the loss function to train its parameters, allowing it to approximate the solution of the governing equations. In addition, with the aid of labelled training data, PINN can also incorporate the real site information of the flow field in model training. In light of this, the PINN model is adopted to reconstruct a two-dimensional time-averaged flow field around a train under crosswinds in the spatial domain with the aid of sparse flow field data, and the prediction results are compared with the reference results obtained from numerical modelling.

Findings

The prediction results from PINN results demonstrated a low discrepancy with those obtained from numerical simulations. The results of this study indicate that a threshold of the spatial embedded data density exists, in both the near wall and far wall areas on the train’s leeward side, as well as the near train surface area. In other words, a negative effect on the PINN reconstruction accuracy will emerge if the spatial embedded data density exceeds or slips below the threshold. Also, the optimum arrangement of the spatial embedded data in reconstructing the flow field of the train in crosswinds is obtained in this work.

Originality/value

In this work, a strategy of reconstructing the time-averaged flow field of the train under crosswind conditions is proposed based on the physics-informed data-driven method, which enhances the scope of neural network applications. In addition, for the flow field reconstruction, the effect of spatial embedded data arrangement in PINN is compared to improve its accuracy.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 25 April 2024

Boxiang Xiao, Zhengdong Liu, Jia Shi and Yuanxia Wang

Accurate and automatic clothing pattern making is very important in personalized clothing customization and virtual fitting room applications. Clothing pattern generating as well…

Abstract

Purpose

Accurate and automatic clothing pattern making is very important in personalized clothing customization and virtual fitting room applications. Clothing pattern generating as well as virtual clothing simulation is an attractive research issue both in clothing industry and computer graphics.

Design/methodology/approach

Physics-based method is an effective way to model dynamic process and generate realistic clothing animation. Due to conceptual simplicity and computational speed, mass-spring model is frequently used to simulate deformable and soft objects follow the natural physical rules. We present a physics-based clothing pattern generating framework by using scanned human body model. After giving a scanned human body model, first, we extract feature points, planes and curves on the 3D model by geometric analysis, and then, we construct a remeshed surface which has been formatted to connected quad meshes. Second, for each clothing piece in 3D, we construct a mass-spring model with same topological structures, and conduct a typical time integration algorithm to the mass-spring model. Finally, we get the convergent clothing pieces in 2D of all clothing parts, and we reconnected parts which are adjacent on 3D model to generate the basic clothing pattern.

Findings

The results show that the presented method is a feasible way for clothing pattern generating by use of scanned human body model.

Originality/value

The main contribution of this work is twofold: one is the geometric algorithm to scanned human body model, which is specially conducted for clothing pattern design to extract feature points, planes and curves. This is the crucial base for suit clothing pattern generating. Another is the physics-based pattern generating algorithm which flattens the 3D shape to 2D shape of cloth pattern pieces.

Details

International Journal of Clothing Science and Technology, vol. 36 no. 3
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 17 September 2024

Wanfeng Zhu, Petia Venkova Sice, Wenchun Zhang, Krystyna Krajewska and Zhangyang Zhao

The purpose of this paper is to bring into the public domain converging ways of thinking about reality and human systems, exploring parallels between the theory of Physical Vacuum…

Abstract

Purpose

The purpose of this paper is to bring into the public domain converging ways of thinking about reality and human systems, exploring parallels between the theory of Physical Vacuum and the concept of Qi in Medical Qigong science.

Design/methodology/approach

The approach adopted in this paper includes: review of the relevant literature; dialogues between the first two authors over an eight-month period; review of the findings and discussion of interpretations by all.

Findings

There is evidence for the existence of an ideal information field. This field is a real space-time torsion structure. Qi is a torsion field. It spreads with superluminal velocity and connects the whole Universe. Any entity is in a constant dynamic connection with everything else in the Universe.

Research limitations/implications

This paper offers limited discussion of the wider area of scientific discoveries.

Social implications

The findings may impact future interdisciplinary research, health/well-being practices and public policy.

Originality/value

There is no known to us publication interpreting the parallels between the theory of the Physical Vacuum and the concept of Qi.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 20 August 2024

Imran Shabir Chuhan, Jing Li, Muhammad Shafiq Ahmed, Muhammad Ashfaq Jamil and Ahsan Ejaz

The main purpose of this study is to analyze the heat transfer phenomena in a dynamically bulging enclosure filled with Cu-water nanofluid. This study examines the convective heat…

Abstract

Purpose

The main purpose of this study is to analyze the heat transfer phenomena in a dynamically bulging enclosure filled with Cu-water nanofluid. This study examines the convective heat transfer process induced by a bulging area considered a heat source, with the enclosure's side walls having a low temperature and top and bottom walls being treated as adiabatic. Various factors, such as the Rayleigh number (Ra), nanoparticle volume fraction, Darcy effects, Hartmann number (Ha) and effects of magnetic inclination, are analyzed for their impact on the flow behavior and temperature distribution.

Design/methodology/approach

The finite element method (FEM) is employed for simulating variations in flow and temperature after validating the results. Solving the non-linear partial differential equations while incorporating the modified Darcy number (10−3Da ≤ 10−1), Ra (103Ra ≤ 105) and Ha (0 ≤ Ha ≤ 100) as the dimensionless operational parameters.

Findings

This study demonstrates that in enclosures with dynamically positioned bulges filled with Cu-water nanofluid, heat transfer is significantly influenced by the bulge location and nanoparticle volume fraction, which alter flow and heat patterns. The varying impact of magnetic fields on heat transfer depends on the Rayleigh and Has.

Practical implications

The geometry configurations employed in this research have broad applications in various engineering disciplines, including heat exchangers, energy storage, biomedical systems and food processing.

Originality/value

This research provides insights into how different shapes of the heated bulging area impact the hydromagnetic convection of Cu-water nanofluid flow in a dynamically bulging-shaped porous system, encompassing curved surfaces and various multi-physical conditions.

Details

Multidiscipline Modeling in Materials and Structures, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1573-6105

Keywords

1 – 10 of over 1000