Search results

1 – 10 of 329
Article
Publication date: 16 April 2018

Garrison N. Stevens, Sez Atamturktur, D. Andrew Brown, Brian J. Williams and Cetin Unal

Partitioned analysis is an increasingly popular approach for modeling complex systems with behaviors governed by multiple, interdependent physical phenomena. Yielding accurate…

Abstract

Purpose

Partitioned analysis is an increasingly popular approach for modeling complex systems with behaviors governed by multiple, interdependent physical phenomena. Yielding accurate representations of reality from partitioned models depends on the availability of all necessary constituent models representing relevant physical phenomena. However, there are many engineering problems where one or more of the constituents may be unavailable because of lack of knowledge regarding the underlying principles governing the behavior or the inability to experimentally observe the constituent behavior in an isolated manner through separate-effect experiments. This study aims to enable partitioned analysis in such situations with an incomplete representation of the full system by inferring the behavior of the missing constituent.

Design/methodology/approach

This paper presents a statistical method for inverse analysis infer missing constituent physics. The feasibility of the method is demonstrated using a physics-based visco-plastic self-consistent (VPSC) model that represents the mechanics of slip and twinning behavior in 5182 aluminum alloy. However, a constituent model to carry out thermal analysis representing the dependence of hardening parameters on temperature is unavailable. Using integral-effect experimental data, the proposed approach is used to infer an empirical constituent model, which is then coupled with VPSC to obtain an experimentally augmented partitioned model representing the thermo-mechanical properties of 5182 aluminum alloy.

Findings

Results demonstrate the capability of the method to enable model predictions dependent upon relevant operational conditions. The VPSC model is coupled with the empirical constituent, and the newly enabled thermal-dependent predictions are compared with experimental data.

Originality/value

The method developed in this paper enables the empirical inference of a functional representation of input parameter values in lieu of a missing constituent model. Through this approach, development of partitioned models in the presence of uncertainty regarding a constituent model is made possible.

Details

Engineering Computations, vol. 35 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 18 January 2013

Tugrul Oktay and Cornel Sultan

The purpose of this paper is to show the feasibility of constrained model predictive control (MPC) for sophisticated helicopter models which are derived by physical considerations.

Abstract

Purpose

The purpose of this paper is to show the feasibility of constrained model predictive control (MPC) for sophisticated helicopter models which are derived by physical considerations.

Design/methodology/approach

Physics‐based modeling is used to create control‐oriented helicopter models. Advanced constrained controllers are designed and tested for these sophisticated models.

Findings

The helicopter models are valid and constrained MPC shows considerable promise for robust tracking.

Practical implications

MPCs can be implemented for highly constrained helicopter flights.

Originality/value

A complete process of control‐oriented, physics‐based model development for helicopters followed by MPC design is developed. It is also proved that constrained MPC can be used and implemented online to robustly track discontinuous helicopter trajectories with heterogeneous constraints, even when the models are sophisticated and physics based.

Details

Aircraft Engineering and Aerospace Technology, vol. 85 no. 1
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 3 July 2017

Anand Amrit, Leifur Leifsson and Slawomir Koziel

This paper aims to investigates several design strategies to solve multi-objective aerodynamic optimization problems using high-fidelity simulations. The purpose is to find…

Abstract

Purpose

This paper aims to investigates several design strategies to solve multi-objective aerodynamic optimization problems using high-fidelity simulations. The purpose is to find strategies which reduce the overall optimization time while still maintaining accuracy at the high-fidelity level.

Design/methodology/approach

Design strategies are proposed that use an algorithmic framework composed of search space reduction, fast surrogate models constructed using a combination of physics-based surrogates and kriging and global refinement of the Pareto front with co-kriging. The strategies either search the full or reduced design space with a low-fidelity model or a physics-based surrogate.

Findings

Numerical investigations of airfoil shapes in two-dimensional transonic flow are used to characterize and compare the strategies. The results show that searching a reduced design space produces the same Pareto front as when searching the full space. Moreover, as the reduced space is two orders of magnitude smaller (volume-wise), the number of required samples to setup the surrogates can be reduced by an order of magnitude. Consequently, the computational time is reduced from over three days to less than half a day.

Originality/value

The proposed design strategies are novel and holistic. The strategies render multi-objective design of aerodynamic surfaces using high-fidelity simulation data in moderately sized search spaces computationally tractable.

Article
Publication date: 2 March 2015

Wei Huang, Sima Didari, Yan Wang and Tequila A.L. Harris

Fibrous porous media have a wide variety of applications in insulation, filtration, acoustics, sensing, and actuation. To design such materials, computational modeling methods are…

Abstract

Purpose

Fibrous porous media have a wide variety of applications in insulation, filtration, acoustics, sensing, and actuation. To design such materials, computational modeling methods are needed to engineer the properties systematically. There is a lack of efficient approaches to build and modify those complex structures in computers. The paper aims to discuss these issues.

Design/methodology/approach

In this paper, the authors generalize a previously developed periodic surface (PS) model so that the detailed shapes of fibers in porous media can be modeled. Because of its periodic and implicit nature, the generalized PS model is able to efficiently construct the three-dimensional representative volume element (RVE) of randomly distributed fibers. A physics-based empirical force field method is also developed to model the fiber bending and deformation.

Findings

Integrated with computational fluid dynamics (CFD) analysis tools, the proposed approach enables simulation-based design of fibrous porous media.

Research limitations/implications

In the future, the authors will investigate robust approaches to export meshes of PS models directly to CFD simulation tools and develop geometric modeling methods for composite materials that include both fibers and resin.

Originality/value

The proposed geometric modeling method with implicit surfaces to represent fibers is unique in its capability of modeling bent and deformed fibers in a RVE and supporting design parameter-based modification for global configuration change for the purpose of macroscopic transport property analysis.

Details

Engineering Computations, vol. 32 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 13 August 2019

Xiaosong Du and Leifur Leifsson

Model-assisted probability of detection (MAPOD) is an important approach used as part of assessing the reliability of nondestructive testing systems. The purpose of this paper is…

Abstract

Purpose

Model-assisted probability of detection (MAPOD) is an important approach used as part of assessing the reliability of nondestructive testing systems. The purpose of this paper is to apply the polynomial chaos-based Kriging (PCK) metamodeling method to MAPOD for the first time to enable efficient uncertainty propagation, which is currently a major bottleneck when using accurate physics-based models.

Design/methodology/approach

In this paper, the state-of-the-art Kriging, polynomial chaos expansions (PCE) and PCK are applied to “a^ vs a”-based MAPOD of ultrasonic testing (UT) benchmark problems. In particular, Kriging interpolation matches the observations well, while PCE is capable of capturing the global trend accurately. The proposed UP approach for MAPOD using PCK adopts the PCE bases as the trend function of the universal Kriging model, aiming at combining advantages of both metamodels.

Findings

To reach a pre-set accuracy threshold, the PCK method requires 50 per cent fewer training points than the PCE method, and around one order of magnitude fewer than Kriging for the test cases considered. The relative differences on the key MAPOD metrics compared with those from the physics-based models are controlled within 1 per cent.

Originality/value

The contributions of this work are the first application of PCK metamodel for MAPOD analysis, the first comparison between PCK with the current state-of-the-art metamodels for MAPOD and new MAPOD results for the UT benchmark cases.

Details

Engineering Computations, vol. 37 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 9 December 2022

Kaitlyn Gee, Suh In Kim, Haden Quinlan and A. John Hart

This study presents a framework to estimate throughput and cost of additive manufacturing (AM) as related to process parameters, material thermodynamic properties and machine…

Abstract

Purpose

This study presents a framework to estimate throughput and cost of additive manufacturing (AM) as related to process parameters, material thermodynamic properties and machine specifications. Taking a 3D model of the part design as input, the model uses a parametrization of the rate-limiting physics of the AM build process – herein focusing on laser powder bed fusion (LPBF) and scaling of LPBF melt pool geometry – to estimate part- and material-specific build time. From this estimate, per-part cost is calculated using a quantity-dependent activity-based production model.

Design/methodology/approach

Analysis tools that assess how design variables and process parameters influence production cost increase our understanding of the economics of AM, thereby supporting its practical adoption. To this aim, our framework produces a representative scaling among process parameters, build rate and production cost.

Findings

For exemplary alloys and LPBF system specifications, predictions reveal the underlying tradeoff between production cost and machine capability, and look beyond the capability of currently commercially available equipment. As a proxy for build quality, the number of times each point in the build is re-melted is derived analytically as a function of process parameters, showcasing the tradeoff between print quality due to increased melting cycles, and throughput.

Originality/value

Typical cost models for AM only assess single operating points and are not coupled to models of the representative rate-limiting process physics. The present analysis of LPBF elucidates this important coupling, revealing tradeoffs between equipment capability and production cost, and looking beyond the limits of current commercially available equipment.

Details

Rapid Prototyping Journal, vol. 29 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 14 August 2017

Adrian Cubillo, Jeroen Vermeulen, Marcos Rodriguez de la Peña, Ignacio Collantes Casanova and Suresh Perinpanayagam

Integrated vehicle health management has been developed for several years in different industries, to be able to provide the required inputs to determine the optimal maintenance…

Abstract

Purpose

Integrated vehicle health management has been developed for several years in different industries, to be able to provide the required inputs to determine the optimal maintenance operations depending on the actual health status of the system. The purpose of this paper is to demonstrate the potential of a physics-based model (PbM) for prognostics with a real case study, based on the detection of incipient faults and estimate the remaining useful life of a planetary transmission of an aircraft system.

Design/methodology/approach

Most of the research in the area of health assessment algorithms has been focused on data-driven approaches that are not based on the knowledge of the physics of the system, while PbM approaches rely on the understanding of the system and the degradation mechanisms. A physics-based modelling approach to represent metal-metal contact and fatigue in the gears of the planetary transmission of an aircraft system is applied.

Findings

Both the failure mode caused by metal-metal contact as caused by fatigue in the gears is described. Furthermore, the real-time application that retrieves the results from the simulations to assess the health of the system is described. Finally the decision making that can be executed during flight in the aircraft is incorporated.

Originality/value

The paper proposes an innovative prognostics health management system that assesses two important failure modes of the planetary transmission that regulates the speed of the generators of an aircraft. The results from the models have been integrated in an application that emulates a real system in the aircraft and computes the remaining useful life in real time.

Details

International Journal of Structural Integrity, vol. 8 no. 4
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 28 October 2022

Jaydeepsinh M. Ravalji and Shruti J. Raval

Selective laser melting and electron beam melting processes are well-known for the additive manufacturing of metal parts. Metal powder bed fusion (MPBF) is a common term for them…

Abstract

Purpose

Selective laser melting and electron beam melting processes are well-known for the additive manufacturing of metal parts. Metal powder bed fusion (MPBF) is a common term for them. The MPBF process can empower the manufacturing of intricate shapes by reducing the use of special tools, shortening the supply chain and allowing small batches. However, the MPBF process suffers from many quality issues. In literature, several works are recorded for qualification of the MPBF part. The purpose of this study is to recollect those works done for quality control and report their helpful findings for further research and development.

Design/methodology/approach

A systematic literature review was conducted to highlight the major quality issues in the MPBF process and its root causes. Further, the works reported in the literature for mitigation of these issues are classified and discussed in five categories: experimental investigation, finite element method-based numerical models, physics-based analytical models, in-situ control using artificial intelligence (AI) and machine learning (ML) methods and statistical approaches. A comparison is also prepared among these strategies based on their suitability and limitations. Additionally, improvements in MPBF printers are pointed out to enhance the part quality.

Findings

Analytical models require less computational time to simulate the MPBF process and need a smaller number of experiments to confirm the results. They can be used as an efficient process parameter planning tool to print metal parts for noncritical applications. The AI-ML based quality control is also suitable for MPBF processes as it can control many processing parameters that may affect the quality of the MPBF part. Moreover, capabilities of MPBF printers like thinner layer thickness, smaller beam diameter, multiple lasers and high build temperature range can help in quality control.

Research limitations/implications

This study converts the piecemeal data on MPBF part qualification methods into interesting information and presents it in tabular form under each strategy. This tabular information provides the basis for further quality improvement efforts in the MPBF process.

Originality/value

This study references researchers and practitioners on recent quality control efforts and their significant findings for a better quality of MPBF part.

Details

Rapid Prototyping Journal, vol. 29 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 18 September 2023

Mingyu Wu, Che Fai Yeong, Eileen Lee Ming Su, William Holderbaum and Chenguang Yang

This paper aims to provide a comprehensive analysis of the state of the art in energy efficiency for autonomous mobile robots (AMRs), focusing on energy sources, consumption…

Abstract

Purpose

This paper aims to provide a comprehensive analysis of the state of the art in energy efficiency for autonomous mobile robots (AMRs), focusing on energy sources, consumption models, energy-efficient locomotion, hardware energy consumption, optimization in path planning and scheduling methods, and to suggest future research directions.

Design/methodology/approach

The systematic literature review (SLR) identified 244 papers for analysis. Research articles published from 2010 onwards were searched in databases including Google Scholar, ScienceDirect and Scopus using keywords and search criteria related to energy and power management in various robotic systems.

Findings

The review highlights the following key findings: batteries are the primary energy source for AMRs, with advances in battery management systems enhancing efficiency; hybrid models offer superior accuracy and robustness; locomotion contributes over 50% of a mobile robot’s total energy consumption, emphasizing the need for optimized control methods; factors such as the center of mass impact AMR energy consumption; path planning algorithms and scheduling methods are essential for energy optimization, with algorithm choice depending on specific requirements and constraints.

Research limitations/implications

The review concentrates on wheeled robots, excluding walking ones. Future work should improve consumption models, explore optimization methods, examine artificial intelligence/machine learning roles and assess energy efficiency trade-offs.

Originality/value

This paper provides a comprehensive analysis of energy efficiency in AMRs, highlighting the key findings from the SLR and suggests future research directions for further advancements in this field.

Details

Robotic Intelligence and Automation, vol. 43 no. 6
Type: Research Article
ISSN: 2754-6969

Keywords

Content available
Article
Publication date: 1 June 2021

Albert Vasso, Richard Cobb, John Colombi, Bryan Little and David Meyer

The US Government is challenged to maintain pace as the world’s de facto provider of space object cataloging data. Augmenting capabilities with nontraditional sensors present an…

958

Abstract

Purpose

The US Government is challenged to maintain pace as the world’s de facto provider of space object cataloging data. Augmenting capabilities with nontraditional sensors present an expeditious and low-cost improvement. However, the large tradespace and unexplored system of systems performance requirements pose a challenge to successful capitalization. This paper aims to better define and assess the utility of augmentation via a multi-disiplinary study.

Design/methodology/approach

Hypothetical telescope architectures are modeled and simulated on two separate days, then evaluated against performance measures and constraints using multi-objective optimization in a heuristic algorithm. Decision analysis and Pareto optimality identifies a set of high-performing architectures while preserving decision-maker design flexibility.

Findings

Capacity, coverage and maximum time unobserved are recommended as key performance measures. A total of 187 out of 1017 architectures were identified as top performers. A total of 29% of the sensors considered are found in over 80% of the top architectures. Additional considerations further reduce the tradespace to 19 best choices which collect an average of 49–51 observations per space object with a 595–630 min average maximum time unobserved, providing redundant coverage of the Geosynchronous Orbit belt. This represents a three-fold increase in capacity and coverage and a 2 h (16%) decrease in the maximum time unobserved compared to the baseline government-only architecture as-modeled.

Originality/value

This study validates the utility of an augmented network concept using a physics-based model and modern analytical techniques. It objectively responds to policy mandating cataloging improvements without relying solely on expert-derived point solutions.

Details

Journal of Defense Analytics and Logistics, vol. 5 no. 1
Type: Research Article
ISSN: 2399-6439

Keywords

1 – 10 of 329