Search results

1 – 10 of over 4000
Article
Publication date: 8 July 2020

Deniz Ustun, Serdar Carbas and Abdurrahim Toktas

In line with computational technological advances, obtaining optimal solutions for engineering problems has become attractive research topics in various disciplines and real…

Abstract

Purpose

In line with computational technological advances, obtaining optimal solutions for engineering problems has become attractive research topics in various disciplines and real engineering systems having multiple objectives. Therefore, it is aimed to ensure that the multiple objectives are simultaneously optimized by considering them among the trade-offs. Furthermore, the practical means of solving those problems are principally concentrated on handling various complicated constraints. The purpose of this paper is to suggest an algorithm based on symbiotic organisms search (SOS), which mimics the symbiotic reciprocal influence scheme adopted by organisms to live on and breed within the ecosystem, for constrained multi-objective engineering design problems.

Design/methodology/approach

Though the general performance of SOS algorithm was previously well demonstrated for ordinary single objective optimization problems, its efficacy on multi-objective real engineering problems will be decisive about the performance. The SOS algorithm is, hence, implemented to obtain the optimal solutions of challengingly constrained multi-objective engineering design problems using the Pareto optimality concept.

Findings

Four well-known mixed constrained multi-objective engineering design problems and a real-world complex constrained multilayer dielectric filter design problem are tackled to demonstrate the precision and stability of the multi-objective SOS (MOSOS) algorithm. Also, the comparison of the obtained results with some other well-known metaheuristics illustrates the validity and robustness of the proposed algorithm.

Originality/value

The algorithmic performance of the MOSOS on the challengingly constrained multi-objective multidisciplinary engineering design problems with constraint-handling approach is successfully demonstrated with respect to the obtained outperforming final optimal designs.

Article
Publication date: 30 August 2019

Slawomir Koziel and Adrian Bekasiewicz

The purpose of this paper is to investigate the strategies and algorithms for expedited design optimization of microwave and antenna structures in multi-objective setup.

Abstract

Purpose

The purpose of this paper is to investigate the strategies and algorithms for expedited design optimization of microwave and antenna structures in multi-objective setup.

Design/methodology/approach

Formulation of the multi-objective design problem-oriented toward execution of the population-based metaheuristic algorithm within the segmented search space is investigated. Described algorithmic framework exploits variable fidelity modeling, physics- and approximation-based representation of the structure and model correction techniques. The considered approach is suitable for handling various problems pertinent to the design of microwave and antenna structures. Numerical case studies are provided demonstrating the feasibility of the segmentation-based framework for the design of real-world structures in setups with two and three objectives.

Findings

Formulation of appropriate design problem enables identification of the search space region containing Pareto front, which can be further divided into a set of compartments characterized by small combined volume. Approximation model of each segment can be constructed using a small number of training samples and then optimized, at a negligible computational cost, using population-based metaheuristics. Introduction of segmentation mechanism to multi-objective design framework is important to facilitate low-cost optimization of many-parameter structures represented by numerically expensive computational models. Further reduction of the design cost can be achieved by enforcing equal-volumes of the search space segments.

Research limitations/implications

The study summarizes recent advances in low-cost multi-objective design of microwave and antenna structures. The investigated techniques exceed capabilities of conventional design approaches involving direct evaluation of physics-based models for determination of trade-offs between the design objectives, particularly in terms of reliability and reduction of the computational cost. Studies on the scalability of segmentation mechanism indicate that computational benefits of the approach decrease with the number of search space segments.

Originality/value

The proposed design framework proved useful for the rapid multi-objective design of microwave and antenna structures characterized by complex and multi-parameter topologies, which is extremely challenging when using conventional methods driven by population-based metaheuristics algorithms. To the authors knowledge, this is the first work that summarizes segmentation-based approaches to multi-objective optimization of microwave and antenna components.

Article
Publication date: 12 June 2017

Slawomir Koziel and Adrian Bekasiewicz

This paper aims to assess control parameter setup and its effect on computational cost and performance of deterministic procedures for multi-objective design optimization of…

Abstract

Purpose

This paper aims to assess control parameter setup and its effect on computational cost and performance of deterministic procedures for multi-objective design optimization of expensive simulation models of antenna structures.

Design/methodology/approach

A deterministic algorithm for cost-efficient multi-objective optimization of antenna structures has been assessed. The algorithm constructs a patch connecting extreme Pareto-optimal designs (obtained by means of separate single-objective optimization runs). Its performance (both cost- and quality-wise) depends on the dimensions of the so-called patch, an elementary region being relocated in the course of the optimization process. The cost/performance trade-offs are studied using two examples of ultra-wideband antenna structures and the optimization results are compared to draw conclusions concerning the algorithm robustness and determine the most advantageous control parameter setups.

Findings

The obtained results indicate that the investigated algorithm is very robust, i.e. its performance is weakly dependent on the control parameters setup. At the same time, it is found that the most suitable setups are those that ensure low computational cost, specifically non-uniform ones generated on the basis of sensitivity analysis.

Research limitations/implications

The study provides recommendations for control parameter setup of deterministic multi-objective optimization procedure for computationally efficient design of antenna structures. This is the first study of this kind for this particular design procedure, which confirms its robustness and determines the most suitable arrangement of the control parameters. Consequently, the presented results permit full automation of the surrogate-assisted multi-objective antenna optimization process while ensuring its lowest possible computational cost.

Originality/value

The work is the first comprehensive validation of the sequential domain patching algorithm under various scenarios of its control parameter setup. The considered design procedure along with the recommended parameter arrangement is a robust and computationally efficient tool for fully automated multi-objective optimization of expensive simulation models of contemporary antenna structures.

Details

Engineering Computations, vol. 34 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 8 February 2016

Jun Sun, Lei Shu, Xianhao Song, Guangsheng Liu, Feng Xu, Enming Miao, Zhihao Xu, Zheng Zhang and Junwei Zhao

This paper aims to use the crankshaft-bearing system of a four-cylinder internal combustion engine as the studying object, and develop a multi-objective optimization design of the…

Abstract

Purpose

This paper aims to use the crankshaft-bearing system of a four-cylinder internal combustion engine as the studying object, and develop a multi-objective optimization design of the crankshaft-bearing. In the current optimization design of engine crankshaft-bearing, only the crankshaft-bearing was considered as the studying object. However, the corresponding relations of major structure dimensions exist between the crankshaft and the crankshaft-bearing in internal combustion engine, and there are the interaction effects between the crankshaft and the crankshaft-bearing during the operation of internal combustion engine.

Design/methodology/approach

The crankshaft mass and the total frictional power loss of crankshaft-bearing s are selected as the objective functions in the optimization design of crankshaft-bearing. The Particle Swarm Optimization algorithm based on the idea of decreasing strategy of inertia weight with the exponential type is used in the optimization calculation.

Findings

The total frictional power loss of crankshaft-bearing and the crankshaft mass are decreased, respectively, by 26.2 and 5.3 per cent by the multi-objective optimization design of crankshaft-bearing, which are more reasonable than the ones of single-objective optimization design in which only the crankshaft-bearing is considered as the studying object.

Originality/value

The crankshaft-bearing system of a four-cylinder internal combustion engine is taken as the studying object, and the multi-objective optimization design of crankshaft-bearing based on the crankshaft-bearing system is developed. The results of this paper are helpful to the design of the crankshaft-bearing for engine. There is universal significance to research the multi-objective optimization design of crankshaft-bearing based on the crankshaft-bearing system. The research method of the multi-objective optimization design of crankshaft-bearing based on the crankshaft-bearing system can be used to the optimization design of the bearing in the shaft-bearing system of ordinary machinery.

Article
Publication date: 7 March 2016

Slawomir Koziel and Adrian Bekasiewicz

Strategies for accelerated multi-objective optimization of compact microwave and RF structures are investigated, including the possibility of exploiting surrogate modeling…

Abstract

Purpose

Strategies for accelerated multi-objective optimization of compact microwave and RF structures are investigated, including the possibility of exploiting surrogate modeling techniques for electromagnetic (EM)-driven design speedup for such components. The paper aims to discuss these issues.

Design/methodology/approach

Two algorithmic frameworks are described that are based on fast response surface approximation models, structure decomposition, and Pareto front refinement. Numerical case studies are provided demonstrating feasibility of solving real-world problems involving multi-objective optimization of miniaturized microwave passives and expensive EM-simulation models of such structures.

Findings

It is possible, through appropriate combination of the surrogate modeling techniques and response correction methods, to identify the set of alternative designs representing the best possible trade-offs between conflicting design objectives in a realistic time frame corresponding to a few dozen of high-fidelity EM simulations of the respective structures.

Research limitations/implications

The present study sets a direction for further studied on expedited optimization of computationally expensive simulation models for miniaturized microwave components.

Originality/value

The proposed algorithmic framework proved useful for fast design of microwave structures, which is extremely challenging when using conventional methods. To the authors’ knowledge, this is one of the first attempts to surrogate-assisted multi-objective optimization of compact components at the EM-simulation level.

Article
Publication date: 9 August 2019

Anand Amrit and Leifur Leifsson

The purpose of this work is to apply and compare surrogate-assisted and multi-fidelity, multi-objective optimization (MOO) algorithms to simulation-based aerodynamic design

Abstract

Purpose

The purpose of this work is to apply and compare surrogate-assisted and multi-fidelity, multi-objective optimization (MOO) algorithms to simulation-based aerodynamic design exploration.

Design/methodology/approach

The three algorithms for multi-objective aerodynamic optimization compared in this work are the combination of evolutionary algorithms, design space reduction and surrogate models, the multi-fidelity point-by-point Pareto set identification and the multi-fidelity sequential domain patching (SDP) Pareto set identification. The algorithms are applied to three cases, namely, an analytical test case, the design of transonic airfoil shapes and the design of subsonic wing shapes, and are evaluated based on the resulting best possible trade-offs and the computational overhead.

Findings

The results show that all three algorithms yield comparable best possible trade-offs for all the test cases. For the aerodynamic test cases, the multi-fidelity Pareto set identification algorithms outperform the surrogate-assisted evolutionary algorithm by up to 50 per cent in terms of cost. Furthermore, the point-by-point algorithm is around 27 per cent more efficient than the SDP algorithm.

Originality/value

The novelty of this work includes the first applications of the SDP algorithm to multi-fidelity aerodynamic design exploration, the first comparison of these multi-fidelity MOO algorithms and new results of a complex simulation-based multi-objective aerodynamic design of subsonic wing shapes involving two conflicting criteria, several nonlinear constraints and over ten design variables.

Article
Publication date: 3 January 2017

Nagarajan V.S., Balaji Mahadevan, Kamaraj V., Arumugam R., Ganesh Nagarajan, Srivignesh S. and Suudharshana M.

The purpose of this paper is performance enhancement of ferrite-assisted synchronous reluctance (FASR) motor using multi-objective differential evolution (MODE) algorithm…

Abstract

Purpose

The purpose of this paper is performance enhancement of ferrite-assisted synchronous reluctance (FASR) motor using multi-objective differential evolution (MODE) algorithm, considering the significant geometric design parameters.

Design/methodology/approach

This work illustrates the optimization of FASR motor using MODE algorithm to enhance the performance of the motor considering barrier angular positions, magnet height, magnet axial length, flux barrier angles of the rotor and air gap length. In the optimization routine to determine the performance parameters, generalized regression neural network-based interpolation is used. The results of MODE are validated with multi-objective particle swarm optimization algorithm and multi-objective genetic algorithm.

Findings

The design optimization procedure developed in this work for FASR motor aims at achieving multiple objectives, namely, average torque, torque ripple and efficiency. With multiple objectives, it is essential to give the designer the tradeoff between different objectives so as to arrive at the best design suitable for the application. The results obtained in this work justify the application of the MODE approach for FASR motor to determine the various feasible solutions within the bounds of the design.

Research limitations/implications

Analysis, design and optimization of synchronous reluctance motor has been explored in detail to establish its potential for variable speed applications. In recent years, the focus is toward the electromagnetic design of hybrid configurations such as FASR motor. It is in this preview this work aims to achieve optimal design of FASR motor using multi-objective optimization approach.

Practical/implications

The results of this work will supplement and encourage the application of FASR motor as a viable alternate for variable speed drive applications. In addition, the application of MODE to arrive at better design solutions is demonstrated.

Originality/value

The approach presented in this work focuses on obtaining enhanced design of FASR motor considering average torque, torque ripple and efficiency as performance measures. The posteriori analysis of optimization provides an insight into the choice of parameters involved and their effects on the design of FASR motor. The efficacy of the optimization routine is justified in comparison with other multi-objective algorithms.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 36 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 7 July 2020

Golak Bihari Mahanta, Deepak BBVL, Bibhuti B. Biswal and Amruta Rout

From the past few decades, parallel grippers are used successfully in the automation industries for performing various pick and place jobs due to their simple design, reliable…

Abstract

Purpose

From the past few decades, parallel grippers are used successfully in the automation industries for performing various pick and place jobs due to their simple design, reliable nature and its economic feasibility. So, the purpose of this paperis to design a suitable gripper with appropriate design parameters for better performance in the robotic production systems.

Design/methodology/approach

In this paper, an enhanced multi-objective ant lion algorithm is introduced to find the optimal geometric and design variables of a parallel gripper. The considered robotic gripper systems are evaluated by considering three objective functions while satisfying eight constraint equations. The beta distribution function is introduced for generating the initial random number at the initialization phase of the proposed algorithm as a replacement of uniform distribution function. A local search algorithm, namely, achievement scalarizing function with multi-criteria decision-making technique and beta distribution are used to enhance the existing optimizer to evaluate the optimal gripper design problem. In this study, the newly proposed enhanced optimizer to obtain the optimum design condition of the design variables is called enhanced multi-objective ant lion optimizer.

Findings

This study aims to obtain optimal design parameters of the parallel gripper with the help of the developed algorithms. The acquired results are investigated with the past research paper conducted in that field for comparison. It is observed that the suggested method to get the best gripper arrangement and variables of the parallel gripper mechanism outperform its counterparts. The effects of the design variables are needed to be studied for a better design approach concerning the objective functions, which is achieved by sensitivity analysis.

Practical implications

The developed gripper is feasible to use in the assembly operation, as well as in other pick and place operations in different industries.

Originality/value

In this study, the problem to find the optimum design parameter (i.e. geometric parameters such as length of the link and parallel gripper joint angles) is addressed as a multi-objective optimization. The obtained results from the execution of the algorithm are evaluated using the performance indicator algorithm and a sensitivity analysis is introduced to validate the effects of the design variables. The obtained optimal parameters are used to develop a gripper prototype, which will be used for the assembly process.

Details

Assembly Automation, vol. 40 no. 5
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 7 November 2016

Slawomir Koziel, Yonatan Tesfahunegn and Leifur Leifsson

Strategies for accelerated multi-objective optimization of aerodynamic surfaces are investigated, including the possibility of exploiting surrogate modeling techniques for…

372

Abstract

Purpose

Strategies for accelerated multi-objective optimization of aerodynamic surfaces are investigated, including the possibility of exploiting surrogate modeling techniques for computational fluid dynamic (CFD)-driven design speedup of such surfaces. The purpose of this paper is to reduce the overall optimization time.

Design/methodology/approach

An algorithmic framework is described that is composed of: a search space reduction, fast surrogate models constructed using variable-fidelity CFD models and co-Kriging, and Pareto front refinement. Numerical case studies are provided demonstrating the feasibility of solving real-world problems involving multi-objective optimization of transonic airfoil shapes and accurate CFD simulation models of such surfaces.

Findings

It is possible, through appropriate combination of surrogate modeling techniques and variable-fidelity models, to identify a set of alternative designs representing the best possible trade-offs between conflicting design objectives in a realistic time frame corresponding to a few dozen of high-fidelity CFD simulations of the respective surfaces.

Originality/value

The proposed aerodynamic design optimization algorithmic framework is novel and holistic. It proved useful for fast design of aerodynamic surfaces using high-fidelity simulation data in moderately sized search space, which is extremely challenging when using conventional methods due to the excessive computational cost.

Article
Publication date: 16 November 2018

Masatoshi Muramatsu and Takeo Kato

The purpose of this paper is to propose the selection guide of the multi-objective optimization methods for the ergonomic design. The proposed guide enables designers to select an…

Abstract

Purpose

The purpose of this paper is to propose the selection guide of the multi-objective optimization methods for the ergonomic design. The proposed guide enables designers to select an appropriate method for optimizing the human characteristics composed of the engineering characteristics (e.g. users’ height, weight and muscular strength) and the physiological characteristics (e.g. brain wave, pulse-beat and myoelectric signal) in the trade-off relationships.

Design/methodology/approach

This paper focuses on the types of the relationships between engineering or physiological characteristics and their psychological characteristics (e.g. comfort and usability). Using these relationships and the characteristics of the multi-objective optimization methods, this paper classified them and constructed a flow chart for selecting them.

Findings

This paper applied the proposed selection guide to a geometric design of a comfortable seat and confirmed its applicability. The selected multi-objective optimization method optimized the contact area of seat back (engineering characteristic associated with the comfortable fit of the seat backrest) and the blood flow volume (physiological characteristic associated with the numbness in the lower limb) on the basis of each design intent such as a deep-vein thrombosis after long flight.

Originality/value

Because of the lack of the selection guide of the multi-objective optimization methods, an inappropriate method is often applied in industry. This paper proposed the selection guide applied in the ergonomic design having a lot of the multi-objective optimization problem.

Details

Journal of Engineering, Design and Technology, vol. 17 no. 1
Type: Research Article
ISSN: 1726-0531

Keywords

1 – 10 of over 4000