Search results

1 – 10 of 18
Article
Publication date: 1 May 2024

Ashish Paul, Bhagyashri Patgiri and Neelav Sarma

Flow induced by rotating disks is of great practical importance in several engineering applications such as rotating heat exchangers, turbine disks, pumps and many more. The…

Abstract

Purpose

Flow induced by rotating disks is of great practical importance in several engineering applications such as rotating heat exchangers, turbine disks, pumps and many more. The present research has been freshly displayed regarding the implementation of an engine oil-based Casson tri-hybrid nanofluid across a rotating disk in mass and heat transferal developments. The purpose of this study is to contemplate the attributes of the flowing tri-hybrid nanofluid by incorporating porosity effects and magnetization and velocity slip effects, viscous dissipation, radiating flux, temperature slip, chemical reaction and activation energy.

Design/methodology/approach

The articulated fluid flow is described by a set of partial differential equations which are converted into one set of higher-order ordinary differential equations (ODEs) by using convenient conversions. The numerical solution of this transformed set of ODEs has been spearheaded by using the effectual bvp4c scheme.

Findings

The acquired results show that the heat transmission rate for the Casson tri-hybrid nanofluid is intensified by, respectively, 9.54% and 11.93% when compared to the Casson hybrid nanofluid and Casson nanofluid. Also, the mass transmission rate for the Casson tri-hybrid nanofluid is augmented by 1.09% and 2.14%, respectively, when compared to the Casson hybrid nanofluid and Casson nanofluid.

Originality/value

The current investigation presents an educative response on how the flow profiles vary with changes in the inevitable flow parameters. As per authors’ knowledge, no such scrutinization has been carried out previously; therefore, our results are novel and unique.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 8 July 2024

A.M. Mohamad, Dhananjay Yadav, Mukesh Kumar Awasthi, Ravi Ragoju, Krishnendu Bhattacharyya and Amit Mahajan

The purpose of the study is to analytically as well as numerically investigate the weight of throughflow on the onset of Casson nanofluid layer in a permeable matrix. This study…

Abstract

Purpose

The purpose of the study is to analytically as well as numerically investigate the weight of throughflow on the onset of Casson nanofluid layer in a permeable matrix. This study examines both the marginal and over stable kind of convective movement in the system.

Design/methodology/approach

A double-phase model is used for Casson nanofluid, which integrates the impacts of thermophoresis and Brownian wave, whereas for flow in the porous matrix the altered Darcy model is occupied under the statement that nanoparticle flux is disappear on the boundaries. The resultant eigenvalue problem is resolved analytically as well as numerically with the help of Galerkin process with the Casson nanofluid Rayleigh–Darcy number as the eigenvalue.

Findings

The findings revealed that the throughflow factor postpones the arrival of convective flow and reduces the extent of convective cells, whereas the Casson factor, the Casson nanoparticle Rayleigh–Darcy number and the reformed diffusivity ratio promote convective motion and also decrease the extent of convective cells.

Originality/value

Controlling the convective movement in heat transfer systems that generate high heat flux is a real mechanical challenge. The proposed framework proved that the use of throughflow is one of the most important ways to control the convective movement in Casson nanofluid. To the best of the authors’ knowledge, no inspection has been established in the literature that studies the outcome of throughflow on the Casson nanofluid convective flow in a porous medium layer. However, the convective flow of Casson nanofluid finds many applications in improving heat transmission and energy efficiency in a range of thermal systems, such as the cooling of heat-generating elements in electronic devices, heat exchangers, pharmaceutical practices and hybrid-powered engines, where throughflow can play a significant role in controlling the convective motion.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 22 August 2024

Gopi V and Vijaya Kumar Avula Golla

This paper aims to explore the numerical study of the steady two-dimensional MHD hybrid Cu-Fe3O4/EG nanofluid flows over an inclined porous plate with an inclined magnetic effect…

Abstract

Purpose

This paper aims to explore the numerical study of the steady two-dimensional MHD hybrid Cu-Fe3O4/EG nanofluid flows over an inclined porous plate with an inclined magnetic effect. Iron oxide (Fe3O4) and copper (Cu) are hybrid nanoparticles, with ethylene glycol as the base fluid. The effects of several physical characteristics, such as the inclination angle, magnetic parameter, thermal radiation, viscous propagation, heat absorption and convective heat transfer, are revealed by this exploration.

Design/methodology/approach

Temperature and velocity descriptions, along with the skin friction coefficient and Nusselt number, are studied to see how they change depending on the parameters. Using compatible similarity transformations, the controlling equations, including those describing the momentum and energy descriptions, are turned into a set of non-linear ordinary differential equations. The streamlined mathematical model is then solved numerically by using the shooting approach and the Runge–Kutta method up to the fourth order. The numerical findings of skin friction and Nusselt number are compared and discussed with prior published data by Nur Syahirah Wahid.

Findings

The graphical representation of the velocity and temperature profiles within the frontier is exhibited and discussed. The various output values related to skin friction and the Nusselt number are shown in the table.

Originality/value

The new results are compared to past research and discovered to agree significantly with those authors’ published works.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 21 August 2024

Muhammad Yousuf Rafiq, Ayesha Sabeen, Aqeel ur Rehman and Zaheer Abbas

The hybrid nanofluid flow due to a rotating disk has numerous applications, including centrifugal pumps, paper production, polymers dying, air filtration systems, automobile…

Abstract

Purpose

The hybrid nanofluid flow due to a rotating disk has numerous applications, including centrifugal pumps, paper production, polymers dying, air filtration systems, automobile cooling and solar collectors. This study aims to investigate the convective heat transport and magnetohydrodynamics (MHD) hybrid nanofluid flow past a stretchable rotating surface using the Yamada-Ota and Xue models with the impacts of heat generation and thermal radiation.

Design/methodology/approach

The carbon nanotubes such as single-wall carbon nanotubes and multi-wall carbon nanotubes are suspended in a base fluid like water to make the hybrid nanofluid. The problem’s governing partial differential equations are transformed into a system of ordinary differential equations using similarity transformations. Then, the numerical solutions are found with a bvp4c function in MATLAB software. The impacts of pertinent parameters on the flow and temperature fields are depicted in tables and graphs.

Findings

Two solution branches are discovered in a certain range of unsteadiness parameters. The fluid temperature and the rate of heat transport are enhanced when the thermal radiation and heat generation effects are increased. The Yamada-Ota model has a higher temperature than the Xue model. Furthermore, it is observed that only the first solution remains stable when the stability analysis is implemented.

Originality/value

To the best of the authors’ knowledge, the results stated are original and new with the investigation of MHD hybrid nanofluid flow with convective heat transfer using the extended version of Yamada-Ota and Xue models. Moreover, the novelty of the present study is improved by taking the impacts of heat generation and thermal radiation.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 9 September 2024

Latifah Falah Alharbi, Umair Khan, Aurang Zaib, S.H.A.M. Shah, Anuar Ishak and Taseer Muhammad

Thermophoresis deposition of particles is a crucial stage in the spread of microparticles over temperature gradients and is significant for aerosol and electrical technologies. To…

Abstract

Purpose

Thermophoresis deposition of particles is a crucial stage in the spread of microparticles over temperature gradients and is significant for aerosol and electrical technologies. To track changes in mass deposition, the effect of particle thermophoresis is therefore seen in a mixed convective flow of Williamson hybrid nanofluids upon a stretching/shrinking sheet.

Design/methodology/approach

The PDEs are transformed into ordinary differential equations (ODEs) using the similarity technique and then the bvp4c solver is employed for the altered transformed equations. The main factors influencing the heat, mass and flow profiles are displayed graphically.

Findings

The findings imply that the larger effects of the thermophoretic parameter cause the mass transfer rate to drop for both solutions. In addition, the suggested hybrid nanoparticles significantly increase the heat transfer rate in both outcomes. Hybrid nanoparticles work well for producing the most energy possible. They are essential in causing the flow to accelerate at a high pace.

Practical implications

The consistent results of this analysis have the potential to boost the competence of thermal energy systems.

Originality/value

It has not yet been attempted to incorporate hybrid nanofluids and thermophoretic particle deposition impact across a vertical stretching/shrinking sheet subject to double-diffusive mixed convection flow in a Williamson model. The numerical method has been validated by comparing the generated numerical results with the published work.

Details

Multidiscipline Modeling in Materials and Structures, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 27 August 2024

Umar Farooq, Tao Liu, Ahmed Jan, Umer Farooq and Samina Majeed

In this study, we investigate the effects of an extended ternary hybrid Tiwari and Das nanofluid model on ethylene glycol flow, with a focus on heat transfer. Using the Cross…

Abstract

Purpose

In this study, we investigate the effects of an extended ternary hybrid Tiwari and Das nanofluid model on ethylene glycol flow, with a focus on heat transfer. Using the Cross non-Newtonian fluid model, we explore the heat transfer characteristics of this unique fluid in various applications such as pharmaceutical solvents, vaccine preservatives, and medical imaging techniques.

Design/methodology/approach

Our investigation reveals that the flow of this ternary hybrid nanofluid follows a laminar Cross model flow pattern, influenced by heat radiation and occurring around a stretched cylinder in a porous medium. We apply a non-similarity transformation to the nonlinear partial differential equations, converting them into non-dimensional PDEs. These equations are subsequently solved as ordinary differential equations (ODEs) using MATLAB’s bvp4c tools. In addition, the magnetic number in this study spans from 0 to 5, volume fraction of nanoparticles varies from 5% to 10%, and Prandtl number for EG as 204. This approach allows us to examine the impact of temperature on heat transfer and distribution within the fluid.

Findings

Graphical depictions illustrate the effects of parameters such as the Weissenberg number, porous parameter, Schmidt number, thermal conductivity parameter, Soret number, magnetic parameter, Eckert number, Lewis number, and Peclet number on velocity, temperature, concentration, and microorganism profiles. Our results highlight the significant influence of thermal radiation and ohmic heating on heat transmission, particularly in relation to magnetic and Darcy parameters. A higher Lewis number corresponds to faster heat diffusion compared to mass diffusion, while increases in the Soret number are associated with higher concentration profiles. Additionally, rapid temperature dissipation inhibits microbial development, reducing the microbial profile.

Originality/value

The numerical analysis of skin friction coefficients and Nusselt numbers in tabular form further validates our approach. Overall, our findings demonstrate the effectiveness of our numerical technique in providing a comprehensive understanding of flow and heat transfer processes in ternary hybrid nanofluids, offering valuable insights for various practical applications.

Details

Multidiscipline Modeling in Materials and Structures, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 8 July 2024

Vinodh Srinivasa Reddy, Jagan Kandasamy and Sivasankaran Sivanandam

The study aims to explore how Soret and Dufour diffusions, thermal radiation, joule heating and magnetohydrodynamics (MHD) affect the flow of hybrid nanofluid (Al2O3-SiO2/water…

34

Abstract

Purpose

The study aims to explore how Soret and Dufour diffusions, thermal radiation, joule heating and magnetohydrodynamics (MHD) affect the flow of hybrid nanofluid (Al2O3-SiO2/water) over a porous medium using a mobile slender needle.

Design/methodology/approach

To streamline the analysis, the authors apply appropriate transformations to change the governing model of partial differential equations into a group of ordinary differential equations. Following this, the authors analyze the transformed equations using the homotopy analysis method within Mathematica software, leading to the derivation of analytical solutions. This study investigates how changing values for porous medium, MHD, Soret and Dufour numbers and thermal radiation influence concentration, temperature and velocity profiles. In addition, the research assesses the effects on local Sherwood number, skin friction and Nusselt number.

Findings

In this investigation, the authors explore the movement of a needle away from its origin ( ε>0). As the magnetic and porous medium parameters increase, there is a correspondence decrease in the velocity profile. Simultaneously, an increase in the Dufour number and thermal radiation parameter yields to a higher temperature profile, whereas arise in the Soret number results in an enhanced concentration profile. Furthermore, growth in the magnetic field parameter is correlated with a reduction in skin friction, Nusselt and Sherwood numbers. In addition, an examination of the data reveals that an escalation in the thermal radiation parameter is associated with an elevation in the Nusselt number. Moreover, an elevation in the Dufour number results in an augmentation in the Nusselt number.

Practical implications

These results have practical applications across diverse fields, including heat transfer enhancement, energy conversion systems, advanced manufacturing and material processing.

Originality/value

This study is distinctive in its investigation of the flow of hybrid nanofluid (Al2O3-SiO2/water) over a slender, moving needle. The analysis includes joule heating, MHD, porous medium, thermal radiation and considering the effects of Soret and Dufour.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 28 March 2024

Monica Puri Sikka, Jameer Aslam Bargir and Samridhi Garg

Intense interest has been shown in creating new and effective biocide agents as a result of changes in bacterial isolates, bacterial susceptibility to antibiotics, an increase in…

Abstract

Purpose

Intense interest has been shown in creating new and effective biocide agents as a result of changes in bacterial isolates, bacterial susceptibility to antibiotics, an increase in patients with burns and wounds and the difficulty of treating infections and antimicrobial resistance. Woven, nonwoven and knitted materials are used to make dressings; however, nonwoven dressings are becoming more popular because of their softness and high absorption capacity. Additionally, textiles have excellent geometrical, physical and mechanical features including three-dimensional structure availability, air, vapor and liquid permeability, strength, extensibility, flexibility and diversity of fiber length, fineness and cross-sectional shapes. It is necessary to treat every burn according to international protocol and along with it has to focus on particular problems of patients and the best possible results.

Design/methodology/approach

The objective of this paper is to conduct a thorough examination of research pertaining to the utilization of textiles, as well as alternative materials and innovative techniques, in the context of burn wound dressings. Through a critical analysis of the findings, this study intends to provide valuable insights that can inform and guide future research endeavors in this field.

Findings

In the past years, there have been several dressings such as xeroform petrolatum gauze, silver-impregnated dressings, biological dressings, hydrocolloid dressings, polyurethane film dressings, silicon-coated nylon dressings, dressings for biosynthetic skin substitutes, hydrogel dressings, newly developed dressings, scaffold bandages, Sorbalgon wound dressing, negative pressure therapy, enzymatic debridement and high-pressure water irrigation developed for the fast healing of burn wounds.

Originality/value

This research conducts a thorough analysis of the role of textiles in modern burn wound dressings.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 24 October 2023

Emel Ken D. Benito, Ariel Miguel M. Aragoncillo, Kylyn A. Morales, Dalisa Mars L. Revilleza, Laurence V. Catindig and Marish S. Madlangbayan

Using coconut shell aggregates (CSA) in concrete benefits agricultural waste management and reduces the demand for mineral resources. Several studies have found that concrete…

Abstract

Purpose

Using coconut shell aggregates (CSA) in concrete benefits agricultural waste management and reduces the demand for mineral resources. Several studies have found that concrete containing CSA can achieve strengths that are comparable to regular concrete. The purpose of the present work is to evaluate the concrete’s durability-related properties to supplement these earlier findings.

Design/methodology/approach

Cylindrical specimens were prepared with a constant water–cement ratio of 0.50 and CSA content ranging from 0% to 50% (at 10% increment) by volume of the total coarse aggregates. The specimens were cured for 28 days and then tested for density, surface hardness, electrical resistivity and water sorptivity. The surface hardness was measured to describe the concrete resistance to surface wearing, while the resistivity and sorptivity were evaluated to describe the material’s resistance to fluid penetration.

Findings

The results showed that the surface hardness of concrete remained on average at 325 Leeb and did not change significantly with CSA addition. The distribution of surface hardness was also similar across all CSA groups, with the interquartile range averaging 59 Leeb. These results suggest that the cement paste and gravel stiffness had a more pronounced influence on the surface hardness than CSA. On the other hand, concrete became lighter by about 9%, had lower resistivity by 80% and had significantly higher initial sorptivity by up to 110%, when 50% of its natural gravel was replaced with CSA. Future work may be done to improve the durability of CSA when used as coarse aggregate.

Originality/value

The present study is the first to show the lack of correlation between CSA content and surface hardness. It would mean that the surface hardness test may not completely capture the porous nature of CSA-added concrete. The paper concludes that without additional treatment prior to mixing, CSA may be limited only to applications where concrete is not in constant contact with water or deleterious substances.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 23 August 2024

Muhammad Sohail, Esha Rafique and Kamaleldin Abodayeh

This investigation delves into the rationale behind the preferential applicability of the non-Newtonian nanofluid model over alternative frameworks, particularly those…

Abstract

Purpose

This investigation delves into the rationale behind the preferential applicability of the non-Newtonian nanofluid model over alternative frameworks, particularly those incorporating porous medium considerations. The study focuses on analyzing the mass and heat transfer characteristics inherent in the Williamson nanofluid’s non-Newtonian flow over a stretched sheet, accounting for influences such as chemical reactions, viscous dissipation, magnetic field and slip velocity. Emphasis is placed on scenarios where the properties of the Williamson nanofluid, including thermal conductivity and viscosity, exhibit temperature-dependent variations.

Design/methodology/approach

Following the use of the OHAM approach, an analytical resolution to the proposed issue is provided. The findings are elucidated through the construction of graphical representations, illustrating the impact of diverse physical parameters on temperature, velocity and concentration profiles.

Findings

Remarkably, it is discerned that the magnetic field, viscous dissipation phenomena and slip velocity assumption significantly influence the heat and mass transmission processes. Numerical and theoretical outcomes exhibit a noteworthy level of qualitative concurrence, underscoring the robustness and reliability of the non-Newtonian nanofluid model in capturing the intricacies of the studied phenomena.

Originality/value

Available studies show that no work on the Williamson model is conducted by considering viscous dissipation and the MHD effect past over an exponentially stretched porous sheet. This contribution fills this gap.

Details

Multidiscipline Modeling in Materials and Structures, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1573-6105

Keywords

1 – 10 of 18