Search results

1 – 10 of over 2000
Article
Publication date: 25 January 2008

Jing‐Jing Fang and Yu Ding

This paper aims to present a flattening method for developing 2D basic patterns from 3D designed garments. The method incorporates the techniques of professional pattern

1123

Abstract

Purpose

This paper aims to present a flattening method for developing 2D basic patterns from 3D designed garments. The method incorporates the techniques of professional pattern development for the purpose of pattern‐making automation. The aims of the flattening method are to improve the dressing suitability and to produce pleasing figures by reversing design procedures.

Design/methodology/approach

A flattening method is presented in this paper for developing 3D undevelopable NURBS surfaces in 2D. The automatic operation embeds the expertise of pattern makers by reducing total area differences between the designed garments in 3D styles and the two‐dimensional patterns. Basic pattern‐making invokes the boundary constraints which apply mesh alignments techniques.

Findings

The global area difference between the original 3D designs and the 2D‐developed pattern is controlled within 5 percent in order to reach the final outcomes of basic patterns, whose shapes are similar to the drawing patterns currently utilized in the industry.

Research limitations/implications

This study currently handles simple designs, such as basal designs, and can only flatten garments in symmetric styles. The direct flattening method is developed by this study. In addition, this study is supplemented by expert‐based knowledge, and it establishes basic boundary conditions for various garment patterns to increase the feasibility of flattening automation.

Originality/value

This study introduces the fundamental theories and methodologies used in the automatic making of basic patterns from 3D garment designs. It proposes a flattening method with pattern expertise embedded by real‐time approximations of the global area of the 3D undevelopable designs to the 2D patterns.

Details

International Journal of Clothing Science and Technology, vol. 20 no. 1
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 1 August 2016

Abu Sadat Muhammad Sayem, Richard Kennon, Nick Clarke and Steven George Hayes

The purpose of this paper is to identify optimum operating parameters, namely, link-length and vertex angle, for producing virtual clothing prototypes for the purpose of pattern

Abstract

Purpose

The purpose of this paper is to identify optimum operating parameters, namely, link-length and vertex angle, for producing virtual clothing prototypes for the purpose of pattern flattening.

Design/methodology/approach

Commercially available physically based simulation and flattening engines were utilized to carry out the computational part of this study. Two separately developed 3D garment templates were used for the creation of virtual garments in the form of a triangulated mesh and later for pattern unwrapping by taking differential link-lengths and vertex angles into account to ascertain their effects on the mesh quality and on the ultimate pattern flattening process.

Findings

It has been found that a link-length between 10 and 15 mm and a vertex angle between 120° and 160° are optimum for the virtual clothing prototyping process.

Practical implications

The findings of this study can universally be applied to simplify the tasks of virtual clothing prototyping and pattern unwrapping using commercial software packages.

Originality/value

Previously, there has not been any guidance available for the selection of specific operational parameters to promote 3D garment design.

Details

International Journal of Clothing Science and Technology, vol. 28 no. 4
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 9 October 2007

Yang Yunchu and Zhang Weiyuan

In order to mass‐customize clothes, it is essential to create prototype pattern according to individual body shape. The purpose of this paper is to present a new method to…

2133

Abstract

Purpose

In order to mass‐customize clothes, it is essential to create prototype pattern according to individual body shape. The purpose of this paper is to present a new method to generate prototype pattern based on individual three‐dimensional (3D) virtual dummy for further study on apparel customization.

Design/methodology/approach

The symmetrized preprocessing and convex hull method are employed to create a dress‐like virtual dummy based on 3D body scanning data. The corresponding structure lines of 2D prototype pattern are defined on the 3D dummy in advance and 3D dummy surface (only half) is cut into ten zones. Based on the characteristics of each surface, further subdivision was made in each zone to create 3D wireframe of garment prototype by calculating the intersection curves between the dummy surface and local planners. Via flattening geometrically 3D wireframe of each zone, final pattern of the prototype is got. Moreover, during the course of flattening of each zone, define constrained lines in advance so as to ensure the position and direction of each cutting pattern beforehand.

Findings

The paper finds that 2D cutting patterns of the prototype have been constructed from the computerized 3D dummy. The length of major structure lines for both 3D model and 2D cutting pattern remain the same. The seven out of ten of cutting patterns have area error within ±1 cm2 compared to 3D surface. Only two cutting have relatively larger error but controlled within 3 cm2.

Originality/value

The most outstanding property of the method developed is the possibility of geometrical transformation of 3D surface to 2D pattern through constructing 3D wireframe of the prototype garment, with no need to define physical‐mechanical properties of fabric used. The newly created 2D cutting patterns have the coincident construction and shape with conventional prototype and are of outstanding quality and preciseness.

Details

International Journal of Clothing Science and Technology, vol. 19 no. 5
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 26 July 2013

Meiling Zhuang and Xiaofeng Zhang

In the trend of individuation and customization, more rapid and flexible clothing pattern production systems are required. Many studies about the system have been done into…

Abstract

Purpose

In the trend of individuation and customization, more rapid and flexible clothing pattern production systems are required. Many studies about the system have been done into producing paper pattern automatically for sewing. The purpose of this paper is to propose a novel three‐dimensional intelligent pattern‐making algorithm.

Design/methodology/approach

Body features are referenced for crack designing, the concept of functional dividing is proposed on the triangled upper body surface based on Gauss Curvature. A new surface flattening algorithm based on body features (SFABF) is put forward. Robert Hooke Law and Young's modulus are referenced for energy model (EMRY) setting up to define and calculate the edge length variation of triangle. Basing on EMRY, another optimizing surface flattening algorithm (OSFA) is designed to optimize SFABF so as to minimize the accumulated energy.

Findings

Shape variation accumulation of flattened pattern can be reduced a lot when the cracks are distributed along functional dividing lines. The points with the largest Gauss Curvature as Bust Point have played a great role in shape variation reduction. Because of textiles' flexibility shape variation need not be reduced to zero. Comparing with the related methods this research is more practical.

Originality/value

To this study, SFABF and OSFA are novel methods to improve practicality. The proposed concept of functional dividing is value to the shape variation reduction from surface flattening.

Details

International Journal of Clothing Science and Technology, vol. 25 no. 4
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 27 May 2014

Jing-Jing Fang and Yu Ding

The purpose of this paper is to find the pattern with minimal deformation energy while developing from 3D designed garments. Moreover, darts are generated to further reduce…

Abstract

Purpose

The purpose of this paper is to find the pattern with minimal deformation energy while developing from 3D designed garments. Moreover, darts are generated to further reduce deformation energy. The aims of the energy-based flattening method are to reduce the difference between 3D designed garments and 2D flattened patterns in an accurate and efficient way.

Design/methodology/approach

This study uses a mass spring method and iterative optimization to analyze pattern contours with minimal contour deformation while flattening three dimensional draping designs into a plane. Darts are generated to further reduce distortion during surface flattening and the energy method is introduced to verify that the analysis results obtained match the garment darts provided by the Bunka formula which is currently widely used in East Asia.

Findings

An efficient method for generating optimal darted pattern is presented. It compares the important factors of darts, including position, length and amount. After iterative optimization and darts generation, the maximum energy reduction is about 30 percent.

Originality/value

This study provides an aggregate to analyze and compare the differences between different patterns and conduct a verification comparison with traditional pattern formula.

Details

International Journal of Clothing Science and Technology, vol. 26 no. 2
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 25 April 2024

Boxiang Xiao, Zhengdong Liu, Jia Shi and Yuanxia Wang

Accurate and automatic clothing pattern making is very important in personalized clothing customization and virtual fitting room applications. Clothing pattern generating as well…

Abstract

Purpose

Accurate and automatic clothing pattern making is very important in personalized clothing customization and virtual fitting room applications. Clothing pattern generating as well as virtual clothing simulation is an attractive research issue both in clothing industry and computer graphics.

Design/methodology/approach

Physics-based method is an effective way to model dynamic process and generate realistic clothing animation. Due to conceptual simplicity and computational speed, mass-spring model is frequently used to simulate deformable and soft objects follow the natural physical rules. We present a physics-based clothing pattern generating framework by using scanned human body model. After giving a scanned human body model, first, we extract feature points, planes and curves on the 3D model by geometric analysis, and then, we construct a remeshed surface which has been formatted to connected quad meshes. Second, for each clothing piece in 3D, we construct a mass-spring model with same topological structures, and conduct a typical time integration algorithm to the mass-spring model. Finally, we get the convergent clothing pieces in 2D of all clothing parts, and we reconnected parts which are adjacent on 3D model to generate the basic clothing pattern.

Findings

The results show that the presented method is a feasible way for clothing pattern generating by use of scanned human body model.

Originality/value

The main contribution of this work is twofold: one is the geometric algorithm to scanned human body model, which is specially conducted for clothing pattern design to extract feature points, planes and curves. This is the crucial base for suit clothing pattern generating. Another is the physics-based pattern generating algorithm which flattens the 3D shape to 2D shape of cloth pattern pieces.

Details

International Journal of Clothing Science and Technology, vol. 36 no. 3
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 25 January 2008

Jing‐Jing Fang, Yu Ding and Su‐Chin Huang

Based on the knowledge of professional pattern makers, this paper aims to propose an expert‐based automation technique of darts generation by aligning and drawing close meshes in…

Abstract

Purpose

Based on the knowledge of professional pattern makers, this paper aims to propose an expert‐based automation technique of darts generation by aligning and drawing close meshes in basic pattern in Part I. Single dart development, such as waist‐fitting dart, shoulder dart, armscye dart, side dart, and their select combination are also presented.

Design/methodology/approach

In this paper, 3D garment surface is first approximated by a finite number of meshes. Patterns are developed by aligning and rotating of the flattened meshes under the constraint of overlay avoidance. The envelop areas between the developed patterns and the curved surface are dramatically reduced from 5 percent of basic pattern to below 3 percent after darts development.

Findings

The development patterns are varied in their association with the subject's body figures and the designed garment. Darts in a different location can reduce the total area difference between the flattening undevelopable surface and the original curved surface.

Research limitations/implications

At the present stage the pattern development method cannot guarantee the uniqueness of pattern outline. Moreover, the pattern maker's knowledge inputs in this paper can only apply to the subject whose waist girth is less than hip girth in circumference.

Originality/value

The embedded pattern maker knowledge provides certain rules for pattern development from 3D design. Moreover, it is practical to be used and exported to modern 2D pattern software for further editing and revision. The same person is also used as a model after the patterns have been sewn into clothes.

Details

International Journal of Clothing Science and Technology, vol. 20 no. 1
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 7 November 2016

Kaixuan Liu, Jianping Wang, Chun Zhu and Yan Hong

Currently, the researches on garment development and wear comfort evaluation mainly focus on the static condition type and seldom involved dynamic condition. Therefore, the…

1097

Abstract

Purpose

Currently, the researches on garment development and wear comfort evaluation mainly focus on the static condition type and seldom involved dynamic condition. Therefore, the purpose of this paper is to develop cycling clothes’ patterns and evaluate their dynamic wear comfort.

Design/methodology/approach

First, the 3D-to-2D flattening technology was applied to develop garment patterns of a cycler’s jersey T-shirt. Then, 3D animation technology was used to simulate the scene of cycling. Next, a novel pressure-measuring method was proposed to measure static and dynamic clothing pressures in a virtual environment. Finally, the collected data were used for evaluating wear comfort.

Findings

Compared to static conditions, the dynamic wear comfort noticeably improved at the front neck, side neck, upper front chest, around back neck point and front shoulder, and the front neck. Compared to static conditions, the dynamic wear comfort visibly deteriorates at the back neck, below chest, outseam, back except around back neck point and around scapula, and the around scapula area. The dynamic pressure at back neck, below front chest and shoulder fluctuate wildly throughout the whole cycling. On the contrary, the dynamic pressure at the front neck, side neck, front upper chest and at the back cause it to tend to stability during cycling.

Originality/value

The 3D virtual-reality technology was applied to simulate cycling. And a novel method was proposed to measure numerical clothing pressures for evaluating the dynamic wear comfort. The proposed method can not only quantitatively evaluate the wear comfort of cycling clothes and optimize cycling clothes’ patterns, but also can be applied to other tight garment types.

Details

International Journal of Clothing Science and Technology, vol. 28 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 2 September 2019

Kanika Jolly, Sybille Krzywinski, PVM Rao and Deepti Gupta

Whilst motorcycling is an activity of pleasure in most parts of the world, in India, it is a regular mode of commuting. The number of registered motorized two wheelers increased…

Abstract

Purpose

Whilst motorcycling is an activity of pleasure in most parts of the world, in India, it is a regular mode of commuting. The number of registered motorized two wheelers increased at the rate of 14.7 percent during the year 2016-2017 to reach the figure of 20.19m in 2018. But, with this increase, the number of motorcycle road accidents is also increasing. Uncomfortable riding clothing is one of the major factors for motorcycle rider’s muscular fatigue, which might at times lead to serious accidents. No kinematic human models have been, so far, used for the design of protective, functional and aesthetic looking products, and the result is, hence, a compromised fit that is not protective or comfortable. The purpose of this paper is to develop virtual 3D human body models for specific postures of a motorcycle rider.

Design/methodology/approach

Kinematic analysis of a motorcycle rider was conducted to identify typical body postures obtained by the motorcycle rider while mounting and riding a motorcycle. The identified body postures were mapped on a virtual parametric human model to obtain digital model of a motorcycle rider. 3D garment patterns for jacket and trouser were developed on all the four body postures. 3D patterns were flattened out to get 2D flat patterns that were compared and analyzed, and appropriate pattern shapes from each of the four postures were selected. Virtual fit analysis was conducted for the finally garment.

Findings

It is well established that a static 2D anthropometry fails to accurately capture the dimensions of complex 3D human form, yielding poor garment fit. Therefore, in this study, virtual, 3D human body models were developed in selected dynamic poses. Garment patterns developed in 3D have the typical movement inbuilt in them; hence, they offer more comfort and ease of motion to the wearer.

Originality/value

The identification of typical body postures of motorcycle rider has not been done before. The CAD models developed in the study can be used for the generation of ergonomic garment patterns for the motorcycle riders.

Details

International Journal of Clothing Science and Technology, vol. 31 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 15 February 2021

Chen Bao, Yongwei Miao, Bingfei Gu, Kaixuan Liu and Zhen Liu

The purpose of this paper is to propose an interactive 2D–3D garment parametric pattern-making and linkage editing scheme that integrates clothing design, simulation and…

Abstract

Purpose

The purpose of this paper is to propose an interactive 2D–3D garment parametric pattern-making and linkage editing scheme that integrates clothing design, simulation and interaction to design 3D garments and 2D patterns. The proposed scheme has the potential to satisfy the individual needs of fashion industry, such as precise fit evaluation of the garment, interactive style editing with ease allowance and constrained contour lines in fashion design.

Design/methodology/approach

The authors first construct a parametric pattern-making model for flat pattern design corresponding to the body dimensions. Then, the designing 2D patterns are stitched on a virtual 3D mannequin by performing a virtual try-on. If the customer is unsatisfied after the virtual try-on, the adjustable parameters (appearance parameters and fit parameters) can be adjusted using the 2D–3D linkage editing with hierarchical constrained contour lines, and the fit evaluation tool interactively provides the feedback.

Findings

The authors observed that the usability and efficiency of the existing garment pattern-making method simplifies the garment pattern-making process. The authors utilize an interactive garment parametric flat pattern-making model to generate an individualized garment flat pattern that effectively adjust and realize the local editing of the garment pattern-making. The 2D–3D linkage editing is then employed, which alters the size and shape of garment pattern for a precise human model fit of the 3D garment using hierarchical constrained contour lines. Various instances have validated the effectiveness of the proposed scheme, which can increase the reusability of the existing garment styles and improve the efficiency of fashion design.

Research limitations/implications

First, the authors do not consider the garment pattern-making design of sophisticated styles. Second, the authors do not directly consider complex garment shapes such as wrinkles, folds, multi-layer models and fabric physical properties.

Originality/value

The authors propose a pattern adjustment scheme that uses the 3D virtual try-on technology to avoid repetitions of reality-based fit tests and garment sample making in the designing process of clothing products. The proposed scheme provides interactive selections of garment patterns and sizes and renders modification tools for 3D garment designing and 2D garment pattern-making. The authors present the 2D–3D interactive linkage editing scheme for a custom-fit garment pattern based on the hierarchical constraint contour lines. The spatial relationship among the human body, pattern pieces and 3D garment model is adequately expressed, and the final design result of the garment pattern is obtained by constraint solving. Meanwhile, the tightness tension of different parts of the 3D garment is analyzed, and the fit and comfort of the garment are quantitatively evaluated.

Details

International Journal of Clothing Science and Technology, vol. 33 no. 5
Type: Research Article
ISSN: 0955-6222

Keywords

1 – 10 of over 2000