Search results

1 – 10 of over 1000
Article
Publication date: 26 July 2013

Meiling Zhuang and Xiaofeng Zhang

In the trend of individuation and customization, more rapid and flexible clothing pattern production systems are required. Many studies about the system have been done into…

Abstract

Purpose

In the trend of individuation and customization, more rapid and flexible clothing pattern production systems are required. Many studies about the system have been done into producing paper pattern automatically for sewing. The purpose of this paper is to propose a novel three‐dimensional intelligent pattern‐making algorithm.

Design/methodology/approach

Body features are referenced for crack designing, the concept of functional dividing is proposed on the triangled upper body surface based on Gauss Curvature. A new surface flattening algorithm based on body features (SFABF) is put forward. Robert Hooke Law and Young's modulus are referenced for energy model (EMRY) setting up to define and calculate the edge length variation of triangle. Basing on EMRY, another optimizing surface flattening algorithm (OSFA) is designed to optimize SFABF so as to minimize the accumulated energy.

Findings

Shape variation accumulation of flattened pattern can be reduced a lot when the cracks are distributed along functional dividing lines. The points with the largest Gauss Curvature as Bust Point have played a great role in shape variation reduction. Because of textiles' flexibility shape variation need not be reduced to zero. Comparing with the related methods this research is more practical.

Originality/value

To this study, SFABF and OSFA are novel methods to improve practicality. The proposed concept of functional dividing is value to the shape variation reduction from surface flattening.

Details

International Journal of Clothing Science and Technology, vol. 25 no. 4
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 9 October 2007

Yang Yunchu and Zhang Weiyuan

In order to mass‐customize clothes, it is essential to create prototype pattern according to individual body shape. The purpose of this paper is to present a new method to…

2112

Abstract

Purpose

In order to mass‐customize clothes, it is essential to create prototype pattern according to individual body shape. The purpose of this paper is to present a new method to generate prototype pattern based on individual three‐dimensional (3D) virtual dummy for further study on apparel customization.

Design/methodology/approach

The symmetrized preprocessing and convex hull method are employed to create a dress‐like virtual dummy based on 3D body scanning data. The corresponding structure lines of 2D prototype pattern are defined on the 3D dummy in advance and 3D dummy surface (only half) is cut into ten zones. Based on the characteristics of each surface, further subdivision was made in each zone to create 3D wireframe of garment prototype by calculating the intersection curves between the dummy surface and local planners. Via flattening geometrically 3D wireframe of each zone, final pattern of the prototype is got. Moreover, during the course of flattening of each zone, define constrained lines in advance so as to ensure the position and direction of each cutting pattern beforehand.

Findings

The paper finds that 2D cutting patterns of the prototype have been constructed from the computerized 3D dummy. The length of major structure lines for both 3D model and 2D cutting pattern remain the same. The seven out of ten of cutting patterns have area error within ±1 cm2 compared to 3D surface. Only two cutting have relatively larger error but controlled within 3 cm2.

Originality/value

The most outstanding property of the method developed is the possibility of geometrical transformation of 3D surface to 2D pattern through constructing 3D wireframe of the prototype garment, with no need to define physical‐mechanical properties of fabric used. The newly created 2D cutting patterns have the coincident construction and shape with conventional prototype and are of outstanding quality and preciseness.

Details

International Journal of Clothing Science and Technology, vol. 19 no. 5
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 25 January 2008

Jing‐Jing Fang and Yu Ding

This paper aims to present a flattening method for developing 2D basic patterns from 3D designed garments. The method incorporates the techniques of professional pattern…

1115

Abstract

Purpose

This paper aims to present a flattening method for developing 2D basic patterns from 3D designed garments. The method incorporates the techniques of professional pattern development for the purpose of pattern‐making automation. The aims of the flattening method are to improve the dressing suitability and to produce pleasing figures by reversing design procedures.

Design/methodology/approach

A flattening method is presented in this paper for developing 3D undevelopable NURBS surfaces in 2D. The automatic operation embeds the expertise of pattern makers by reducing total area differences between the designed garments in 3D styles and the two‐dimensional patterns. Basic pattern‐making invokes the boundary constraints which apply mesh alignments techniques.

Findings

The global area difference between the original 3D designs and the 2D‐developed pattern is controlled within 5 percent in order to reach the final outcomes of basic patterns, whose shapes are similar to the drawing patterns currently utilized in the industry.

Research limitations/implications

This study currently handles simple designs, such as basal designs, and can only flatten garments in symmetric styles. The direct flattening method is developed by this study. In addition, this study is supplemented by expert‐based knowledge, and it establishes basic boundary conditions for various garment patterns to increase the feasibility of flattening automation.

Originality/value

This study introduces the fundamental theories and methodologies used in the automatic making of basic patterns from 3D garment designs. It proposes a flattening method with pattern expertise embedded by real‐time approximations of the global area of the 3D undevelopable designs to the 2D patterns.

Details

International Journal of Clothing Science and Technology, vol. 20 no. 1
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 27 May 2014

Jing-Jing Fang and Yu Ding

The purpose of this paper is to find the pattern with minimal deformation energy while developing from 3D designed garments. Moreover, darts are generated to further reduce…

Abstract

Purpose

The purpose of this paper is to find the pattern with minimal deformation energy while developing from 3D designed garments. Moreover, darts are generated to further reduce deformation energy. The aims of the energy-based flattening method are to reduce the difference between 3D designed garments and 2D flattened patterns in an accurate and efficient way.

Design/methodology/approach

This study uses a mass spring method and iterative optimization to analyze pattern contours with minimal contour deformation while flattening three dimensional draping designs into a plane. Darts are generated to further reduce distortion during surface flattening and the energy method is introduced to verify that the analysis results obtained match the garment darts provided by the Bunka formula which is currently widely used in East Asia.

Findings

An efficient method for generating optimal darted pattern is presented. It compares the important factors of darts, including position, length and amount. After iterative optimization and darts generation, the maximum energy reduction is about 30 percent.

Originality/value

This study provides an aggregate to analyze and compare the differences between different patterns and conduct a verification comparison with traditional pattern formula.

Details

International Journal of Clothing Science and Technology, vol. 26 no. 2
Type: Research Article
ISSN: 0955-6222

Keywords

Open Access
Article
Publication date: 18 March 2022

Shengtao Lin and Zhengcai Zhao

Complex and exquisite patterns are sculpted on the surface to beautify the parts. Due to the thin-walled nature, the blank of the part is often deformed by the forming and…

Abstract

Purpose

Complex and exquisite patterns are sculpted on the surface to beautify the parts. Due to the thin-walled nature, the blank of the part is often deformed by the forming and clamping processes, disabling the nominal numerical control (NC) sculpting programs. To address this problem, a fast adaptive sculpting method of the complex surface is proposed.

Design/methodology/approach

The geometry of the blank surface is measured using on-machine measurement (OMM). The real blank surface is reconstructed using the non-uniform rational basis spline (NURBS) method. The angle-based flattening (ABF) algorithm is used to flatten the reconstructed blank surface. The dense points are extracted from the pattern on the image using the OpenCV library. Then, the dense points are quickly located on the complex surfaces to generate the tool paths.

Findings

By flattening the reconstructed surface and creating the mapping between the contour points and the planar mesh triangular patches, the tool paths can be regenerated to keep the contour of the pattern on the deformed thin-walled surface.

Originality/value

The proposed method can adjust the tool paths according to the deformation of the thin-walled part. The consistency of sculpting patterns is improved.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. 3 no. 1
Type: Research Article
ISSN: 2633-6596

Keywords

Article
Publication date: 25 January 2008

Jing‐Jing Fang, Yu Ding and Su‐Chin Huang

Based on the knowledge of professional pattern makers, this paper aims to propose an expert‐based automation technique of darts generation by aligning and drawing close meshes in…

Abstract

Purpose

Based on the knowledge of professional pattern makers, this paper aims to propose an expert‐based automation technique of darts generation by aligning and drawing close meshes in basic pattern in Part I. Single dart development, such as waist‐fitting dart, shoulder dart, armscye dart, side dart, and their select combination are also presented.

Design/methodology/approach

In this paper, 3D garment surface is first approximated by a finite number of meshes. Patterns are developed by aligning and rotating of the flattened meshes under the constraint of overlay avoidance. The envelop areas between the developed patterns and the curved surface are dramatically reduced from 5 percent of basic pattern to below 3 percent after darts development.

Findings

The development patterns are varied in their association with the subject's body figures and the designed garment. Darts in a different location can reduce the total area difference between the flattening undevelopable surface and the original curved surface.

Research limitations/implications

At the present stage the pattern development method cannot guarantee the uniqueness of pattern outline. Moreover, the pattern maker's knowledge inputs in this paper can only apply to the subject whose waist girth is less than hip girth in circumference.

Originality/value

The embedded pattern maker knowledge provides certain rules for pattern development from 3D design. Moreover, it is practical to be used and exported to modern 2D pattern software for further editing and revision. The same person is also used as a model after the patterns have been sewn into clothes.

Details

International Journal of Clothing Science and Technology, vol. 20 no. 1
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 22 May 2007

Yunchu Yang, Weiyuan Zhang and Cong Shan

The paper aims to provide an overview of the area of digital pattern developing for customized apparel.

3127

Abstract

Purpose

The paper aims to provide an overview of the area of digital pattern developing for customized apparel.

Design/methodology/approach

The paper outlines several methods of digital pattern developing for customized apparel, and discusses the principles, characters and applications. Digital pattern developing process has two paths. One path develops apparel according to traditional 2D pattern‐making technology. There are three methods: parametric design, traditional grading technique, and pattern generating based on artificial intelligence (AI). Another path develops pattern through surface flattening directly from individual 3D apparel model.

Findings

For parametric method, it can improve greatly the efficiency of pattern design or pattern alteration. However, the development and application of parametric Computer‐Aided‐Design (CAD) systems in apparel industry are difficult, because apparel pattern has fewer laws in graphical structure. For grading technique, it is the most practical method because of its simple theory, with which pattern masters are familiar. But these methods require users with higher experience. Creating expert pattern system based on AI can reduce the experience requirements. Meanwhile, a great deal of experiments should be conducted for each garment with different style to create their knowledge databases. For 3D CAD technology, two methods of surface flattening have been outlined, namely geometry flattening and physical flattening. But many improvements should be done if the 3D CAD systems are applied in apparel mass customization.

Originality/value

The paper provides information of value to the future research on developing a practical made‐to‐measure apparel pattern system.

Details

International Journal of Clothing Science and Technology, vol. 19 no. 3/4
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 10 May 2019

Xiao-Shun Zhao, Li Yu, Xue Yang and Si-Yu Zhang

The purpose of this study was to develop a new folding method for modeling complicated folded fabric with surfaces of revolution.

Abstract

Purpose

The purpose of this study was to develop a new folding method for modeling complicated folded fabric with surfaces of revolution.

Design/methodology/approach

Irregular wrinkles and mesh distortions easily appear in the fold modeling of a complex curved surface. Aimed at this key technical problem, the segmentation mapping folding method (SMFM) is proposed in this paper. First, high-precision flattened planes were obtained by using segmentation mapping techniques. Second, the segmented planes were transformed into a folded and continuous geometric model by using matrix transformations. Finally, initial stress was used to modify the geometric folding errors, which ensured agreement with the inflated flexible fabric’s geometry and the original design.

Findings

Compared with the traditional folding method, SMFM has the advantages of good finite-element mesh quality, large radial compression rate, regular folds, etc. The surface area error and the volume error of the inflated single torus established by SMFM were only 1.2 per cent, showing that SMFM has high modeling accuracy. The numerical results of an inflatable re-entry vehicle are presented to demonstrate the reliability, feasibility and applicability of SMFM. Moreover, the stress modification reduced the problems of stress concentration and mesh distortions, improving the accuracy and stability of the numerical calculations.

Originality/value

In this paper, for the first time, a folding method for modeling complicated folded fabric is proposed. This methodology can be used to model the multidimensional compression and regular folds of complex surfaces of revolution that cannot be flattened and to improve the accuracy and stability of the numerical calculations.

Details

Engineering Computations, vol. 36 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 13 March 2017

Wenjing Zhang, Wei Chen and Zhe Liu

The aim of this study is to understand thermal effects and surface topography of roller bearings with misaligned load under combination of multifactors by an experimental method.

Abstract

Purpose

The aim of this study is to understand thermal effects and surface topography of roller bearings with misaligned load under combination of multifactors by an experimental method.

Design/methodology/approach

A series of orthogonal experiments would need to be planned and performed. A ranking of impact degree of factors on edge effect and eccentric load effect can be learned with multivariate analysis of variance by Statistical Product and Service Solutions software. Influence rules of each individual factor can also be obtained through more experiments. A roller surface phase diagram both before and after test can be observed with metallographic microscope. An axial profile data of roller can be measured by PGI 3D Profiler, then a roller generatrix contour can be achieved through filtering measured signal with empirical mode decomposition method.

Findings

Slip fraction has most impact on edge effect, whereas tilting angle plays a key role in eccentric load effect. For the case of low temperature, skidding damage does not occur. Inversely, because of the high pressure in partial elastohydrodynamic lubrication caused by roller tilt, running-in occurs and micro asperity flattening is observed on a rough surface. And, the larger the tilting angle, the more obvious the micro-flattening and the greater the reduction of roller surface roughness after the test.

Originality/value

A lot of theoretical studies on thermal effect of roller bearings surface morphology have been published. However, there are little on relevant experimental study, especially on thermal effect with an integration of sliding, tilting and unbalance loading.

Details

Industrial Lubrication and Tribology, vol. 69 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 2 January 2018

Ji Li, Tom Monaghan, Robert Kay, Ross James Friel and Russell Harris

This paper aims to explore the potential of ultrasonic additive manufacturing (UAM) to incorporate the direct printing of electrical materials and arrangements (conductors and…

Abstract

Purpose

This paper aims to explore the potential of ultrasonic additive manufacturing (UAM) to incorporate the direct printing of electrical materials and arrangements (conductors and insulators) at the interlaminar interface of parts during manufacture to allow the integration of functional and optimal electrical circuitries inside dense metallic objects without detrimental effect on the overall mechanical integrity. This holds promise to release transformative device functionality and applications of smart metallic devices and products.

Design/methodology/approach

To ensure the proper electrical insulation between the printed conductors and metal matrices, an insulation layer with sufficient thickness is required to accommodate the rough interlaminar surface which is inherent to the UAM process. This in turn increases the total thickness of printed circuitries and thereby adversely affects the integrity of the UAM part. A specific solution is proposed to optimise the rough interlaminar surface through deforming the UAM substrates via sonotrode rolling or UAM processing.

Findings

The surface roughness (Sa) could be reduced from 4.5 to 4.1 µm by sonotrode rolling and from 4.5 to 0.8 µm by ultrasonic deformation. Peel testing demonstrated that sonotrode-rolled substrates could maintain their mechanical strength, while the performance of UAM-deformed substrates degraded under same welding conditions ( approximately 12 per cent reduction compared with undeformed substrates). This was attributed to the work hardening of deformation process which was identified via dual-beam focussed ion beam–scanning electron microscope investigation.

Originality/value

The sonotrode rolling was identified as a viable methodology in allowing printed electrical circuitries in UAM. It enabled a decrease in the thickness of printed electrical circuitries by ca. 25 per cent.

Details

Rapid Prototyping Journal, vol. 24 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of over 1000