Search results

1 – 10 of 68
Article
Publication date: 17 April 2024

Bingyi Li, Songtao Qu and Gong Zhang

This study aims to focus on the surface mount technology (SMT) mass production process of Sn-9Zn-2.5Bi-1.5In solder. It explores it with some components that will provide…

Abstract

Purpose

This study aims to focus on the surface mount technology (SMT) mass production process of Sn-9Zn-2.5Bi-1.5In solder. It explores it with some components that will provide theoretical support for the industrial SMT application of Sn-Zn solder.

Design/methodology/approach

This study evaluates the properties of solder pastes and selects a more appropriate reflow parameter by comparing the microstructure of solder joints with different reflow soldering profile parameters. The aim is to provide an economical and reliable process for SMT production in the industry.

Findings

Solder paste wettability and solder ball testing in a nitrogen environment with an oxygen content of 3,000 ppm meet the requirements of industrial production. The printing performance of the solder paste is good and can achieve a printing rate of 100–160 mm/s. When soldering with a traditional stepped reflow soldering profile, air bubbles are generated on the surface of the solder joint, and there are many voids and defects in the solder joint. A linear reflow soldering profile reduces the residence time below the melting point of the solder paste (approximately 110 s). This reduces the time the zinc is oxidized, reducing solder joint defects. The joint strength of tin-zinc joints soldered with the optimized reflow parameters is close to that of Sn-58Bi and SAC305, with high joint strength.

Originality/value

This study attempts to industrialize the application of Sn-Zn solder and solves the problem that Sn-Zn solder paste is prone to be oxidized in the application and obtains the SMT process parameters suitable for Sn-9Zn-2.5Bi-1.5In solder.

Details

Soldering & Surface Mount Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 2 March 2023

Bahareh Nikmehr, Bidur Kafle and Riyadh Al-Ameri

This study aimed to review various existing methods for improving the quality of recycled concrete aggregates (RCAs) as a possible substitution for natural aggregates (NAs) in…

Abstract

Purpose

This study aimed to review various existing methods for improving the quality of recycled concrete aggregates (RCAs) as a possible substitution for natural aggregates (NAs) in concrete. It is vital as the old paste attached to the RCA weakens its structure. It is due to the porous structure of the RCA with cracks, weakening the interfacial transition zone (ITZ) between the RCA and binding material, negatively impacting the concrete's properties. To this end, various methods for reinforcement of the RCA, cleaning the RCA's old paste and enhancing the quality of the RCA-based concrete without RCA modification are studied in terms of environmental effects, cost and technical matters. Furthermore, this research sought to identify gaps in knowledge and future research directions.

Design/methodology/approach

The review of the relevant journal papers revealed that various methods exist for improving the properties of RCAs and RCA-based concrete. A decision matrix was developed and implemented for ranking these techniques based on environmental, economic and technical criteria.

Findings

The identified methods for reinforcement of the RCA include accelerated carbonation, bio deposition, soaking in polymer emulsions, soaking in waterproofing admixture, soaking in sodium silicate, soaking in nanoparticles and coating with geopolymer slurry. Moreover, cleaning the RCA's old paste is possible using acid, water, heating, thermal and mechanical treatment, thermo-mechanical and electro-dynamic treatment. Added to these treatment techniques, using RCA in saturated surface dry (SSD) mixing approaches and adding fibres or pozzolana enhance the quality of the RCA-based concrete without RCA modification. The study ranked these techniques based on environmental, economic and technical criteria. Ultimately, adding fibres, pozzolana and coating RCA with geopolymer slurry were introduced as the best techniques based on the nominated criteria.

Practical implications

The study supported the need for better knowledge regarding the existing treatment techniques for RCA improvement. The outcomes of this research offer an understanding of each RCA enrichment technique's importance in environmental, economic and technical criteria.

Originality/value

The practicality of the RCA treatment techniques is based on economic, environmental and technical specifications for rating the existing treatment techniques.

Details

Smart and Sustainable Built Environment, vol. 13 no. 3
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 18 March 2024

Lifeng Wang, Fei Yu, Ziwang Xiao and Qi Wang

When the reinforced concrete beams are reinforced by bonding steel plates to the bottom, excessive use of steel plates will make the reinforced concrete beams become…

Abstract

Purpose

When the reinforced concrete beams are reinforced by bonding steel plates to the bottom, excessive use of steel plates will make the reinforced concrete beams become super-reinforced beams, and there are security risks in the actual use of super-reinforced beams. In order to avoid the occurrence of this situation, the purpose of this paper is to study the calculation method of the maximum number of bonded steel plates to reinforce reinforced concrete beams.

Design/methodology/approach

First of all, when establishing the limit failure state of the reinforced member, this paper comprehensively considers the role of the tensile steel bar and steel plate and takes the load effect before reinforcement as the negative contribution of the maximum number of bonded steel plates that can be used for reinforcement. Through the definition of the equivalent tensile strength, equivalent elastic modulus and equivalent yield strain of the tensile steel bar and steel plate, a method to determine the relative limit compression zone height of the reinforced member is obtained. Second, based on the maximum ratio of (reinforcement + steel plate), the relative limit compression zone height and the equivalent tensile strength of the tensile steel bar and steel plate of the reinforced member, the calculation method of the maximum number of bonded steel plates is derived. Then, the static load test of the test beam is carried out and the corresponding numerical model is established, and the reliability of the numerical model is verified by comparison. Finally, the accuracy of the calculation method of the maximum number of bonded steel plates is proved by the numerical model.

Findings

The numerical simulation results show that when the steel plate width is 800 mm and the thickness is 1–4 mm, the reinforced concrete beam has a delayed yield platform when it reaches the limit state, and the failure mode conforms to the basic stress characteristics of the balanced-reinforced beam. When the steel plate thickness is 5–8 mm, the sudden failure occurs without obvious warning when the reinforced concrete beam reaches the limit state. The failure mode conforms to the basic mechanical characteristics of the super-reinforced beam failure, and the bending moment of the beam failure depends only on the compressive strength of the concrete. The results of the calculation and analysis show that the maximum number of bonded steel plates for reinforced concrete beams in this experiment is 3,487 mm2. When the width of the steel plate is 800 mm, the maximum thickness of the steel plate can be 4.36 mm. That is, when the thickness of the steel plate, the reinforced concrete beam is still the balanced-reinforced beam. When the thickness of the steel plate, the reinforced concrete beam will become a super-reinforced beam after reinforcement. The calculation results are in good agreement with the numerical simulation results, which proves the accuracy of the calculation method.

Originality/value

This paper presents a method for calculating the maximum number of steel plates attached to the bottom of reinforced concrete beams. First, based on the experimental research, the failure mode of reinforced concrete beams with different number of steel plates is simulated by the numerical model, and then the result of the calculation method is compared with the result of the numerical simulation to ensure the accuracy of the calculation method of the maximum number of bonded steel plates. And the study does not require a large number of experimental samples, which has a certain economy. The research result can be used to control the number of steel plates in similar reinforcement designs.

Details

International Journal of Structural Integrity, vol. 15 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 30 September 2022

Hamada Abdelwahab, Fatimah A.M. Al-Zahrani, Ali A. Ali, Ammar Mahmoud and Long Lin

This paper aims to synthesize new screen-printing ink formula based on new derivatives of azo thiadiazol disperse dyes and evaluate their characteristics after being printed on…

Abstract

Purpose

This paper aims to synthesize new screen-printing ink formula based on new derivatives of azo thiadiazol disperse dyes and evaluate their characteristics after being printed on polyester fabric substrates.

Design/methodology/approach

New dispersed dyes based on 1, 3, 4-Thiadiazole derivatives (dyes 1 and 2) were prepared and confirmed by different analyses, infrared (IR), mass and nuclear magnetic resonance (NMR) spectroscopy, and then formulated as colored materials in the screen-printing ink formulations. Printing pastes containing the prepared dyestuffs and other ingredients were used for printing polyester using screen-printing or traditional printing. The characteristics of printed polyester fabric substrates were measured by color measurements such as a*, b*, L*, C*, E, Ho, R% and color strength, as well as light, washing, crock and alkali perspiration fastness, and finally, the depth of penetration was evaluated.

Findings

The prepared 1, 3, 4-Thiadiazole derivatives (dyes 1 and 2) were obtained from the reaction of 5,5’-(1,4-phenylene)bis(1,3,4-Thiadiazole-2-amine) with resorcinol and m-toluidine as a coupling component. The suitability of the prepared dyestuffs for silk screen-printing on polyester fabrics has been investigated. The prints obtained from a formulation containing dye 1 possess high color strength as well as good overall fastness properties if compared to those obtained using dye 2.

Practical implications

The method of synthesis of the new dyestuffs and screen-printing ink provides a simple and practical solution to prepare some new heterocyclic disperse azo dyes, and they are formulated in the screen-printing inks for printing on a polyester fabric substrate.

Originality/value

The prepared disperse dyes based on 1,3,4-Thiadiazole derivatives (dyes 1 and 2) could be used in textile printing of polyester on an industrial scale.

Details

Pigment & Resin Technology, vol. 53 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 31 August 2022

Richard Kwasi Bannor, Bismark Amfo and Helena Oppong-Kyeremeh

With the empirical evidence on the purchase behaviour of tinned tomatoes, food labelling and the safety consciousness of consumers in Ghana were examined.

Abstract

Purpose

With the empirical evidence on the purchase behaviour of tinned tomatoes, food labelling and the safety consciousness of consumers in Ghana were examined.

Design/methodology/approach

Primary data were obtained from 130 consumers. Descriptive statistics, factor analysis and multinomial probit analysis were applied.

Findings

Consumers use tinned tomatoes for cooking because of its easy accessibility in nearby shops, guaranteed constant supply, attractive package, it being affordable/cheaper, its better colour, advertisement/promotion, and longer shelf life. There is a low level of food safety consciousness among consumers since only one-fifth read labels on tinned tomatoes very often, and one-fifth do not read labels at all. Consumers frequently check on tinned tomatoes' most essential information: brand/type, manufacturing and expiry dates, and weight/volume. Age, residential status, contact information, nutritional benefits and affordability influence the choice of retail brand of tinned tomatoes. The health label consumer segment and conventional label consumer segment were identified, with the majority being the former.

Research limitations/implications

The sample size used for the study could be improved in terms of number and geographical coverage. This is because the study was limited to only one main urbanised area in Ghana. Therefore, it will be worthwhile for a further study to be conducted by comparing urban and rural consumers in Ghana and other countries within Africa, to either validate or reveal a different trajectory of consumer behaviour relevant to marketing, policy and practice.

Originality/value

Tomato paste (tinned tomatoes) is consumed in almost all homes in Africa, but there are food scare concerns about tinned tomatoes due to reported cases of adulteration with unhealthy materials such as starch and food colour, leading to negative health implications on consumers. This makes the reading of tinned tomato labels very crucial. Thus, it is of policy relevance to investigate consumers' reading behaviour of label information on tinned tomatoes in Ghana. However, previous studies on food labelling focussed on food and nutrition labelling and implications of food labelling on consumers' purchase behaviour, with most of them outside Africa.

Details

Journal of Agribusiness in Developing and Emerging Economies, vol. 14 no. 2
Type: Research Article
ISSN: 2044-0839

Keywords

Article
Publication date: 18 April 2023

Emel Ken D. Benito, Ariel Miguel M. Aragoncillo, Francis Augustus A. Pascua, Jules M. Juanites, Maricel A. Eneria, Richelle G. Zafra and Marish S. Madlangbayan

The durability of concrete containing recycled aggregates, sourced from concrete specimens that have been tested in laboratory testing facilities, remains understudied. This paper…

Abstract

Purpose

The durability of concrete containing recycled aggregates, sourced from concrete specimens that have been tested in laboratory testing facilities, remains understudied. This paper aims to present the results of experiments investigating the effect of incorporating such type of concrete waste on the strength and durability-related properties of concrete.

Design/methodology/approach

A total of 77 concrete cylinders sized Ø100 × 200 mm with varying amount of recycled concrete aggregate (RCA) (0%–100% by volume, at 25% increments) and maximum aggregate size (12.5, 19.0 and 25.0 mm) were fabricated and tested for slump, compressive strength, sorptivity and electrical resistivity. Disk-shaped specimens, 50-mm thick, were cut from the original cylinders for sorptivity and resistivity tests. Analysis of variance and post hoc test were conducted to detect statistical variability among the data.

Findings

Compared to regular concrete, a reduction of slump (by 18.6%), strength (15.1%), secondary sorptivity (31.5%) and resistivity (17.0%) were observed from concrete containing 100% RCA. Statistical analyses indicate that these differences are significant. In general, an aggregate size of 19 mm was found to produce the optimum value of slump, compressive strength and sorptivity in regular and RCA-added concrete.

Originality/value

The results of this study suggest that comparable properties of normal concrete were still achieved by replacing 25% of coarse aggregate volume with 19-mm RCA, which was processed from laboratory-tested concrete samples. Therefore, such material can be considered as a potential and sustainable alternative to crushed gravel for use in light or nonstructural concrete construction.

Details

World Journal of Engineering, vol. 21 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 20 January 2023

Sabah Ben Messaoud

The purpose of this paper is to make a contribution to understanding the influence of factors such as the water/cement (W/C) ratio and the granular class on the mechanical and…

Abstract

Purpose

The purpose of this paper is to make a contribution to understanding the influence of factors such as the water/cement (W/C) ratio and the granular class on the mechanical and physical properties of high-strength concretes (HSCs). In the formulations of HSC, aggregates by their high mass and volume proportion play an important role. When selecting aggregates, it is necessary to know their intrinsic properties. These properties influence the performance of concrete, in particular the quality of the granulate cimentary adhesion.

Design/methodology/approach

This experimental study focused on the effect of W/C ratio (0.25, 0.30, 0.35), the effect of replacing a part of cement by silica fume (SF) (8%), the effect of fraction of aggregate on properties of fresh and hardened concrete, the effect of different environment conversation like drinking water and sea water on compressive strength and the study of absorption of water and softening using the mix design method of the University of Sherbrooke combined with the Dreux-Gorisse method which gives good results.

Findings

At the end of our work, the examination of the results obtained made it possible to establish the correlations between the formulations studied and the physicomechanical characteristics of the concrete compositions (HSC25, HSC16, HSC8). The results of this study show that the use of three granular classifications (DMAX8, DMAX16 and DMAX25) and three report W/C (0.25, 0.30 and 0.35) in two different conservation environment (drinking water and sea water) give HSCs, HSC25 with an W/C = 0.25 ratio has reached the largest mechanical strength of 90 MPa for different environments of conservation. For selecting aggregates, it is necessary to know their intrinsic properties, these properties influence the strength of concrete. In general, there is a slight decrease in the compressive resistance of the specimens stored in seawater, it can be said that the conservation life has not had effect on the resistance (28 days). The effect of aggressive environment can appear in the long term.

Research limitations/implications

Mixed design and concrete fabrication with a 28-day compressive strength of up to 68 MPa or more of 90 MPa can now be possible used in Jiel (Algeria), and it should no longer be considered to be used only in an experimental domain. Addition of SF in concrete showed good development of strength between 7 and 28 days, depending on the design of the mix.

Practical implications

Concrete containing 8% SF with W/B of 0.25 has higher compressive strength than the other concretes, and concretes with SF are more resistant than concretes without SF, so it is possible to have concrete with a compressive strength of 82 MPa for W/C 0.25 without SF. Like as a result, we can avoid the use of SF to affect the strength of concrete at compressive strength of 68 MPa, and a slump of 21 cm, because the SF is the most expensive ingredient used in the composition of concrete and is therefore very important economically. One of the main factors of production of HSC above 90 MPa is use of aggregate DMAX25, which is stronger with W/B of 0.25 and 0.30.

Social implications

This mixtures leads to a very dense microstructure and low porosity and produces increased permeability of HSC and is able to resist the penetration of aggressive agents. This combination has a positive effect on the economy of concrete.

Originality/value

The combination of the Dreux-Gorisse method with the Sherbrook method is very beneficial for determining the percentage of aggregates used, and the use of coarse aggregates of Jijel to obtain HSC with 90 MPa and 16 cm of workability.

Details

World Journal of Engineering, vol. 21 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 24 April 2024

Shahriar Abubakri, Pritpal S. Mangat, Konstantinos Grigoriadis and Vincenzo Starinieri

Microwave curing (MC) can facilitate rapid concrete repair in cold climates without using conventional accelerated curing technologies which are environmentally unsustainable…

Abstract

Purpose

Microwave curing (MC) can facilitate rapid concrete repair in cold climates without using conventional accelerated curing technologies which are environmentally unsustainable. Accelerated curing of concrete under MC can contribute to the decarbonisation of the environment and provide economies in construction in several ways such as reducing construction time, energy efficiency, lower cement content, lower carbonation risk and reducing emissions from equipment.

Design/methodology/approach

The paper investigates moisture loss and pore properties of six cement-based proprietary concrete repair materials subjected to MC. The impact of MC on these properties is critically important for its successful implementation in practice and current literature lacks this information. Specimens were microwave cured for 40–45 min to surface temperatures between 39.9 and 44.1 °C. The fast-setting repair material was microwave cured for 15 min to 40.7 °C. MC causes a higher water loss which shows the importance of preventing drying during MC and the following 24 h.

Findings

Portland cement-based normal density repair mortars, including materials incorporating pfa and polymer latex, benefit from the thermal effect of MC on hydration, resulting in up to 24% reduction in porosity relative to normal curing. Low density and flowing repair materials suffer an increase in porosity up to 16% due to MC. The moisture loss at the end of MC and after 24h is related to the mix water content and porosity, respectively.

Originality/value

The research on the application of MC for rapid repair of concrete is original. The research was funded by the European commission following a very rigorous and competitive review process which ensured its originality. Original data on the parameters of porosity and moisture loss under MC are provided for different generic cementitious repair materials which have not been studied before. Application of MC to concrete construction especially in cold climates will provide environmental, economic and energy benefits.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 17 April 2024

Manisha Malik, Devyani Tomar, Narpinder Singh and B.S. Khatkar

This study aims to provide a salt ready-mix to instant fried noodles manufacturers.

Abstract

Purpose

This study aims to provide a salt ready-mix to instant fried noodles manufacturers.

Design/methodology/approach

Response surface methodology was used to get optimized salt ready-mix based on carbonate salt, disodium phosphate, tripotassium phospahte, sodium hexametaphosphate and sodium chloride. Peak viscosity of flour and yellowness, cooking loss and hardness of noodles were considered as response factors for finding optimized salt formulation.

Findings

The results showed that salts have an important role in governing quality of noodles. Optimum levels of five independent variables of salts, namely, carbonate salt (1:1 mixture of sodium to potassium carbonate), disodium phosphate, sodium hexametaphosphate, tripotassium phosphate and sodium chloride were 0.64%, 0.29%, 0.25%, 0.46% and 0.78% on flour weight basis, respectively.

Originality/value

To the best of the authors’ knowledge, this is the first study to assess the effect of different combinations of different salts on the quality of noodles. These findings will also benefit noodle manufacturers, assisting in production of superior quality noodles.

Details

Nutrition & Food Science , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0034-6659

Keywords

Open Access
Article
Publication date: 25 April 2024

Ilse Valenzuela Matus, Jorge Lino Alves, Joaquim Góis, Paulo Vaz-Pires and Augusto Barata da Rocha

The purpose of this paper is to review cases of artificial reefs built through additive manufacturing (AM) technologies and analyse their ecological goals, fabrication process…

148

Abstract

Purpose

The purpose of this paper is to review cases of artificial reefs built through additive manufacturing (AM) technologies and analyse their ecological goals, fabrication process, materials, structural design features and implementation location to determine predominant parameters, environmental impacts, advantages, and limitations.

Design/methodology/approach

The review analysed 16 cases of artificial reefs from both temperate and tropical regions. These were categorised based on the AM process used, the mortar material used (crucial for biological applications), the structural design features and the location of implementation. These parameters are assessed to determine how effectively the designs meet the stipulated ecological goals, how AM technologies demonstrate their potential in comparison to conventional methods and the preference locations of these implementations.

Findings

The overview revealed that the dominant artificial reef implementation occurs in the Mediterranean and Atlantic Seas, both accounting for 24%. The remaining cases were in the Australian Sea (20%), the South Asia Sea (12%), the Persian Gulf and the Pacific Ocean, both with 8%, and the Indian Sea with 4% of all the cases studied. It was concluded that fused filament fabrication, binder jetting and material extrusion represent the main AM processes used to build artificial reefs. Cementitious materials, ceramics, polymers and geopolymer formulations were used, incorporating aggregates from mineral residues, biological wastes and pozzolan materials, to reduce environmental impacts, promote the circular economy and be more beneficial for marine ecosystems. The evaluation ranking assessed how well their design and materials align with their ecological goals, demonstrating that five cases were ranked with high effectiveness, ten projects with moderate effectiveness and one case with low effectiveness.

Originality/value

AM represents an innovative method for marine restoration and management. It offers a rapid prototyping technique for design validation and enables the creation of highly complex shapes for habitat diversification while incorporating a diverse range of materials to benefit environmental and marine species’ habitats.

Details

Rapid Prototyping Journal, vol. 30 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of 68