Search results

1 – 10 of 246
Open Access
Article
Publication date: 3 June 2022

Shuanbao Yao, Dawei Chen and Sansan Ding

The nose length is the key design parameter affecting the aerodynamic performance of high-speed maglev train, and the horizontal profile has a significant impact on the…

Abstract

Purpose

The nose length is the key design parameter affecting the aerodynamic performance of high-speed maglev train, and the horizontal profile has a significant impact on the aerodynamic lift of the leading and trailing cars Hence, the study analyzes aerodynamic parameters with multi-objective optimization design.

Design/methodology/approach

The nose of normal temperature and normal conduction high-speed maglev train is divided into streamlined part and equipment cabin according to its geometric characteristics. Then the modified vehicle modeling function (VMF) parameterization method and surface discretization method are adopted for the parametric design of the nose. For the 12 key design parameters extracted, combined with computational fluid dynamics (CFD), support vector machine (SVR) model and multi-objective particle swarm optimization (MPSO) algorithm, the multi-objective aerodynamic optimization design of high-speed maglev train nose and the sensitivity analysis of design parameters are carried out with aerodynamic drag coefficient of the whole vehicle and the aerodynamic lift coefficient of the trailing car as the optimization objectives and the aerodynamic lift coefficient of the leading car as the constraint. The engineering improvement and wind tunnel test verification of the optimized shape are done.

Findings

Results show that the parametric design method can use less design parameters to describe the nose shape of high-speed maglev train. The prediction accuracy of the SVR model with the reduced amount of calculation and improved optimization efficiency meets the design requirements.

Originality/value

Compared with the original shape, the aerodynamic drag coefficient of the whole vehicle is reduced by 19.2%, and the aerodynamic lift coefficients of the leading and trailing cars are reduced by 24.8 and 51.3%, respectively, after adopting the optimized shape modified according to engineering design requirements.

Details

Railway Sciences, vol. 1 no. 2
Type: Research Article
ISSN: 2755-0907

Keywords

Open Access
Article
Publication date: 16 August 2023

Andrea Zani, Alberto Speroni, Andrea Giovanni Mainini, Michele Zinzi, Luisa Caldas and Tiziana Poli

The paper aims to investigate the comfort-related performances of an innovative solar shading solution based on a new composite patented material that consists of a cement-based…

Abstract

Purpose

The paper aims to investigate the comfort-related performances of an innovative solar shading solution based on a new composite patented material that consists of a cement-based matrix coupled with a stretchable three-dimensional textile. The paper’s aim is, through a performance-based generative design approach, to develop a high-performance static shading system able to guarantee adequate daylit spaces, a connection with the outdoors and a glare-free environment in the view of a holistic and occupant-centric daylight assessment.

Design/methodology/approach

The paper describes the design and simulation process of a complex static shading system for digital manufacturing purposes. Initially, the optical material properties were characterized to calibrate radiance-based simulations. The developed models were then implemented in a multi-objective genetic optimization algorithm to improve the shading geometries, and their performance was assessed and compared with traditional external louvres and overhangs.

Findings

The system developed demonstrates, for a reference office space located in Milan (Italy), the potential of increasing useful daylight illuminance by 35% with a reduced glare of up to 70%–80% while providing better uniformity and connection with the outdoors as a result of a topological optimization of the shape and position of the openings.

Originality/value

The paper presents the innovative nature of a new composite material that, coupled with the proposed performance-based optimization process, enables the fabrication of optimized shading/cladding surfaces with complex geometries whose formability does not require ad hoc formworks, making the process fast and economic.

Details

Construction Innovation , vol. 24 no. 1
Type: Research Article
ISSN: 1471-4175

Keywords

Open Access
Article
Publication date: 26 March 2024

Sergio de la Rosa, Pedro F. Mayuet, Cátia S. Silva, Álvaro M. Sampaio and Lucía Rodríguez-Parada

This papers aims to study lattice structures in terms of geometric variables, manufacturing variables and material-based variants and their correlation with compressive behaviour…

Abstract

Purpose

This papers aims to study lattice structures in terms of geometric variables, manufacturing variables and material-based variants and their correlation with compressive behaviour for their application in a methodology for the design and development of personalized elastic therapeutic products.

Design/methodology/approach

Lattice samples were designed and manufactured using extrusion-based additive manufacturing technologies. Mechanical tests were carried out on lattice samples for elasticity characterization purposes. The relationships between sample stiffness and key geometric and manufacturing variables were subsequently used in the case study on the design of a pressure cushion model for validation purposes. Differentiated areas were established according to patient’s pressure map to subsequently make a correlation between the patient’s pressure needs and lattice samples stiffness.

Findings

A substantial and wide variation in lattice compressive behaviour was found depending on the key study variables. The proposed methodology made it possible to efficiently identify and adjust the pressure of the different areas of the product to adapt them to the elastic needs of the patient. In this sense, the characterization lattice samples turned out to provide an effective and flexible response to the pressure requirements.

Originality/value

This study provides a generalized foundation of lattice structural design and adjustable stiffness in application of pressure cushions, which can be equally applied to other designs with similar purposes. The relevance and contribution of this work lie in the proposed methodology for the design of personalized therapeutic products based on the use of individual lattice structures that function as independent customizable cells.

Details

Rapid Prototyping Journal, vol. 30 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 3 June 2022

Peter Gangl, Stefan Köthe, Christiane Mellak, Alessio Cesarano and Annette Mütze

This paper aims to deal with the design optimization of a synchronous reluctance machine to be used in an X-ray tube, where the goal is to maximize the torque while keeping low…

Abstract

Purpose

This paper aims to deal with the design optimization of a synchronous reluctance machine to be used in an X-ray tube, where the goal is to maximize the torque while keeping low the amount of material used, by means of gradient-based free-form shape optimization.

Design/methodology/approach

The presented approach is based on the mathematical concept of shape derivatives and allows to obtain new motor designs without the need to introduce a geometric parametrization. This paper presents an extension of a standard gradient-based free-form shape optimization algorithm to the case of multiple objective functions by determining updates, which represent a descent of all involved criteria. Moreover, this paper illustrates a way to obtain an approximate Pareto front.

Findings

The presented method allows to obtain optimal designs of arbitrary, non-parametric shape with very low computational cost. This paper validates the results by comparing them to a parametric geometry optimization in JMAG by means of a stochastic optimization algorithm. While the obtained designs are of similar shape, the computational time used by the gradient-based algorithm is in the order of minutes, compared to several hours taken by the stochastic optimization algorithm.

Originality/value

This paper applies the presented gradient-based multi-objective optimization algorithm in the context of free-form shape optimization using the mathematical concept of shape derivatives. The authors obtain a set of Pareto-optimal designs, each of which is a shape that is not represented by a fixed set of parameters. To the best of the authors’ knowledge, this approach to multi-objective free-form shape optimization is novel in the context of electric machines.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 41 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Open Access
Article
Publication date: 16 March 2020

Slawomir Koziel and Adrian Bekasiewicz

The purpose of this paper is to exploit a database of pre-existing designs to accelerate parametric optimization of antenna structures is investigated.

3463

Abstract

Purpose

The purpose of this paper is to exploit a database of pre-existing designs to accelerate parametric optimization of antenna structures is investigated.

Design/methodology/approach

The usefulness of pre-existing designs for rapid design of antennas is investigated. The proposed approach exploits the database existing antenna base designs to determine a good starting point for structure optimization and its response sensitivities. The considered method is suitable for handling computationally expensive models, which are evaluated using full-wave electromagnetic (EM) simulations. Numerical case studies are provided demonstrating the feasibility of the framework for the design of real-world structures.

Findings

The use of pre-existing designs enables rapid identification of a good starting point for antenna optimization and speeds-up estimation of the structure response sensitivities. The base designs can be arranged into subsets (simplexes) in the objective space and used to represent the target vector, i.e. the starting point for structure design. The base closest base point w.r.t. the initial design can be used to initialize Jacobian for local optimization. Moreover, local optimization costs can be reduced through the use of Broyden formula for Jacobian updates in consecutive iterations.

Research limitations/implications

The study investigates the possibility of reusing pre-existing designs for the acceleration of antenna optimization. The proposed technique enables the identification of a good starting point and reduces the number of expensive EM simulations required to obtain the final design.

Originality/value

The proposed design framework proved to be useful for the identification of good initial design and rapid optimization of modern antennas. Identification of the starting point for the design of such structures is extremely challenging when using conventional methods involving parametric studies or repetitive local optimizations. The presented methodology proved to be a useful design and geometry scaling tool when previously obtained designs are available for the same antenna structure.

Details

Engineering Computations, vol. 37 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Open Access
Article
Publication date: 14 October 2021

Anton Wiberg, Johan Persson and Johan Ölvander

The purpose of this paper is to present a Design for Additive Manufacturing (DfAM) methodology that connects several methods, from geometrical design to post-process selection…

1897

Abstract

Purpose

The purpose of this paper is to present a Design for Additive Manufacturing (DfAM) methodology that connects several methods, from geometrical design to post-process selection, into a common optimisation framework.

Design/methodology/approach

A design methodology is formulated and tested in a case study. The outcome of the case study is analysed by comparing the obtained results with alternative designs achieved by using other design methods. The design process in the case study and the potential of the method to be used in different settings are also discussed. Finally, the work is concluded by stating the main contribution of the paper and highlighting where further research is needed.

Findings

The proposed method is implemented in a novel framework which is applied to a physical component in the case study. The component is a structural aircraft part that was designed to minimise weight while respecting several static and fatigue structural load cases. An addition goal is to minimise the manufacturing cost. Designs optimised for manufacturing by two different AM machines (EOS M400 and Arcam Q20+), with and without post-processing (centrifugal finishing) are considered. The designs achieved in this study show a significant reduction in both weight and cost compared to one AM manufactured geometry designed using more conventional methods and one design milled in aluminium.

Originality/value

The method in this paper allows for the holistic design and optimisation of components while considering manufacturability, cost and component functionality. Within the same framework, designs optimised for different setups of AM machines and post-processing can be automatically evaluated without any additional manual work.

Details

Rapid Prototyping Journal, vol. 27 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 6 August 2019

Anton Wiberg, Johan Persson and Johan Ölvander

This paper aims to review recent research in design for additive manufacturing (DfAM), including additive manufacturing (AM) terminology, trends, methods, classification of DfAM…

16481

Abstract

Purpose

This paper aims to review recent research in design for additive manufacturing (DfAM), including additive manufacturing (AM) terminology, trends, methods, classification of DfAM methods and software. The focus is on the design engineer’s role in the DfAM process and includes which design methods and tools exist to aid the design process. This includes methods, guidelines and software to achieve design optimization and in further steps to increase the level of design automation for metal AM techniques. The research has a special interest in structural optimization and the coupling between topology optimization and AM.

Design/methodology/approach

The method used in the review consists of six rounds in which literature was sequentially collected, sorted and removed. Full presentation of the method used could be found in the paper.

Findings

Existing DfAM research has been divided into three main groups – component, part and process designand based on the review of existing DfAM methods, a proposal for a DfAM process has been compiled. Design support suitable for use by design engineers is linked to each step in the compiled DfAM process. Finally, the review suggests a possible new DfAM process that allows a higher degree of design automation than today’s process. Furthermore, research areas that need to be further developed to achieve this framework are pointed out.

Originality/value

The review maps existing research in design for additive manufacturing and compiles a proposed design method. For each step in the proposed method, existing methods and software are coupled. This type of overall methodology with connecting methods and software did not exist before. The work also contributes with a discussion regarding future design process and automation.

Details

Rapid Prototyping Journal, vol. 25 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 17 December 2019

Yin Kedong, Shiwei Zhou and Tongtong Xu

To construct a scientific and reasonable indicator system, it is necessary to design a set of standardized indicator primary selection and optimization inspection process. The…

1324

Abstract

Purpose

To construct a scientific and reasonable indicator system, it is necessary to design a set of standardized indicator primary selection and optimization inspection process. The purpose of this paper is to provide theoretical guidance and reference standards for the indicator system design process, laying a solid foundation for the application of the indicator system, by systematically exploring the expert evaluation method to optimize the index system to enhance its credibility and reliability, to improve its resolution and accuracy and reduce its objectivity and randomness.

Design/methodology/approach

The paper is based on system theory and statistics, and it designs the main line of “relevant theoretical analysis – identification of indicators – expert assignment and quality inspection” to achieve the design and optimization of the indicator system. First, the theoretical basis analysis, relevant factor analysis and physical process description are used to clarify the comprehensive evaluation problem and the correlation mechanism. Second, the system structure analysis, hierarchical decomposition and indicator set identification are used to complete the initial establishment of the indicator system. Third, based on expert assignment method, such as Delphi assignments, statistical analysis, t-test and non-parametric test are used to complete the expert assignment quality diagnosis of a single index, the reliability and validity test is used to perform single-index assignment correction and consistency test is used for KENDALL coordination coefficient and F-test multi-indicator expert assignment quality diagnosis.

Findings

Compared with the traditional index system construction method, the optimization process used in the study standardizes the process of index establishment, reduces subjectivity and randomness, and enhances objectivity and scientificity.

Originality/value

The innovation point and value of the paper are embodied in three aspects. First, the system design process of the combined indicator system, the multi-dimensional index screening and system optimization are carried out to ensure that the index system is scientific, reasonable and comprehensive. Second, the experts’ background is comprehensively evaluated. The objectivity and reliability of experts’ assignment are analyzed and improved on the basis of traditional methods. Third, aim at the quality of expert assignment, conduct t-test, non-parametric test of single index, and multi-optimal test of coordination and importance of multiple indicators, enhance experts the practicality of assignment and ensures the quality of expert assignment.

Details

Marine Economics and Management, vol. 2 no. 1
Type: Research Article
ISSN: 2516-158X

Keywords

Open Access
Article
Publication date: 7 December 2023

Elena Vazquez

Algorithmic and computational thinking are necessary skills for designers in an increasingly digital world. Parametric design, a method to construct designs based on algorithmic…

Abstract

Purpose

Algorithmic and computational thinking are necessary skills for designers in an increasingly digital world. Parametric design, a method to construct designs based on algorithmic logic and rules, has become widely used in architecture practice and incorporated in the curricula of architecture schools. However, there are few studies proposing strategies for teaching parametric design into architecture students, tackling software literacy while promoting the development of algorithmic thinking.

Design/methodology/approach

A descriptive study and a prescriptive study are conducted. The descriptive study reviews the literature on parametric design education. The prescriptive study is centered on proposing the incomplete recipe as instructional material and a new approach to teaching parametric design.

Findings

The literature on parametric design education has mostly focused on curricular discussions, descriptions of case studies or studio-long approaches; day-to-day instructional methods, however, are rarely discussed. A pedagogical strategy to teach parametric design is introduced: the incomplete recipe. The instructional method proposed provides students with incomplete recipes for parametric scripts that are increasingly pared down as the students become expert users.

Originality/value

The article contributes to the existing literature by proposing the incomplete recipe as a strategy for teaching parametric design. The recipe as a pedagogical tool provides a means for both software skill acquisition and the development of algorithmic thinking.

Details

Open House International, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0168-2601

Keywords

Open Access
Article
Publication date: 22 June 2018

Stefan Colza Lee and William Eid Junior

This paper aims to identify a possible mismatch between the theory found in academic research and the practices of investment managers in Brazil.

5988

Abstract

Purpose

This paper aims to identify a possible mismatch between the theory found in academic research and the practices of investment managers in Brazil.

Design/methodology/approach

The chosen approach is a field survey. This paper considers 78 survey responses from 274 asset management companies. Data obtained are analyzed using independence tests between two variables and multiple regressions.

Findings

The results show that most Brazilian investment managers have not adopted current best practices recommended by the financial academic literature and that there is a significant gap between academic recommendations and asset management practices. The modern portfolio theory is still more widely used than the post-modern portfolio theory, and quantitative portfolio optimization is less often used than the simple rule of defining a maximum concentration limit for any single asset. Moreover, the results show that the normal distribution is used more than parametrical distributions with asymmetry and kurtosis to estimate value at risk, among other findings.

Originality/value

This study may be considered a pioneering work in portfolio construction, risk management and performance evaluation in Brazil. Although academia in Brazil and abroad has thoroughly researched portfolio construction, risk management and performance evaluation, little is known about the actual implementation and utilization of this research by Brazilian practitioners.

Details

RAUSP Management Journal, vol. 53 no. 3
Type: Research Article
ISSN: 2531-0488

Keywords

1 – 10 of 246