Search results

1 – 10 of over 2000
Open Access
Article
Publication date: 16 February 2022

Karl Hollaus, Susanne Bauer, Michael Leumüller and Christian Türk

Cables are ubiquitous in electronic-based systems. Electromagnetic emission of cables and crosstalk between wires is an important issue in electromagnetic compatibility and is to…

1005

Abstract

Purpose

Cables are ubiquitous in electronic-based systems. Electromagnetic emission of cables and crosstalk between wires is an important issue in electromagnetic compatibility and is to be minimized in the design phase. To facilitate the design, models of different complexity and accuracy, for instance, circuit models or finite element (FE) simulations, are used. The purpose of this study is to compare transmission line parameters obtained by measurements and simulations.

Design/methodology/approach

Transmission line parameters were determined by means of measurements in the frequency and time domain and by FE simulations in the frequency domain and compared. Finally, a Spice simulation with lumped elements was performed.

Findings

The determination of the effective permittivity of insulated wires seems to be a key issue in comparing measurements and simulations.

Originality/value

A space decomposition technique for a guided wave on an infinite configuration with constant cross-section has been introduced, where an analytic representation in the direction of propagation is used, and the transversal fields are approximated by FEs.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 41 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Open Access
Article
Publication date: 8 August 2019

Johann Wilhelm and Werner Renhart

The purpose of this paper is to investigate an alternative to established hysteresis models.

3308

Abstract

Purpose

The purpose of this paper is to investigate an alternative to established hysteresis models.

Design/methodology/approach

Different mathematical representations of the magnetic hysteresis are compared and some differences are briefly discussed. After this, the application of the T(x) function is presented and an inductor model is developed. Implementation details of the used transient circuit simulator code are further discussed. From real measurement results, parameters for the model are extracted. The results of the final simulation are finally discussed and compared to measurements.

Findings

The T(x) function possesses a fast mathematical formulation with very good accuracy. It is shown that this formulation is very well suited for an implementation in transient circuit simulator codes. Simulation results using the developed model are in very good agreement with measurements.

Research limitations/implications

For the purpose of this paper, only soft magnetic materials were considered. However, literature suggests, that the T(x) function can be extended to hard magnetic materials. Investigations on this topic are considered as future work.

Originality/value

While the mathematical background of the T(x) function is very well presented in the referenced papers, the application in a model of a real device is not very well discussed yet. The presented paper is directly applicable to typical problems in the field of power electronics.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 38 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Open Access
Article
Publication date: 21 December 2021

Vahid Badeli, Sascha Ranftl, Gian Marco Melito, Alice Reinbacher-Köstinger, Wolfgang Von Der Linden, Katrin Ellermann and Oszkar Biro

This paper aims to introduce a non-invasive and convenient method to detect a life-threatening disease called aortic dissection. A Bayesian inference based on enhanced…

Abstract

Purpose

This paper aims to introduce a non-invasive and convenient method to detect a life-threatening disease called aortic dissection. A Bayesian inference based on enhanced multi-sensors impedance cardiography (ICG) method has been applied to classify signals from healthy and sick patients.

Design/methodology/approach

A 3D numerical model consisting of simplified organ geometries is used to simulate the electrical impedance changes in the ICG-relevant domain of the human torso. The Bayesian probability theory is used for detecting an aortic dissection, which provides information about the probabilities for both cases, a dissected and a healthy aorta. Thus, the reliability and the uncertainty of the disease identification are found by this method and may indicate further diagnostic clarification.

Findings

The Bayesian classification shows that the enhanced multi-sensors ICG is more reliable in detecting aortic dissection than conventional ICG. Bayesian probability theory allows a rigorous quantification of all uncertainties to draw reliable conclusions for the medical treatment of aortic dissection.

Originality/value

This paper presents a non-invasive and reliable method based on a numerical simulation that could be beneficial for the medical management of aortic dissection patients. With this method, clinicians would be able to monitor the patient’s status and make better decisions in the treatment procedure of each patient.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 41 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Content available
Article
Publication date: 1 February 2005

107

Abstract

Details

Aircraft Engineering and Aerospace Technology, vol. 77 no. 1
Type: Research Article
ISSN: 0002-2667

Keywords

Open Access
Article
Publication date: 7 March 2019

Manuel E. Rademaker, Florian Schuberth and Theo K. Dijkstra

The purpose of this paper is to enhance consistent partial least squares (PLSc) to yield consistent parameter estimates for population models whose indicator blocks contain a…

2161

Abstract

Purpose

The purpose of this paper is to enhance consistent partial least squares (PLSc) to yield consistent parameter estimates for population models whose indicator blocks contain a subset of correlated measurement errors.

Design/methodology/approach

Correction for attenuation as originally applied by PLSc is modified to include a priori assumptions on the structure of the measurement error correlations within blocks of indicators. To assess the efficacy of the modification, a Monte Carlo simulation is conducted.

Findings

In the presence of population measurement error correlation, estimated parameter bias is generally small for original and modified PLSc, with the latter outperforming the former for large sample sizes. In terms of the root mean squared error, the results are virtually identical for both original and modified PLSc. Only for relatively large sample sizes, high population measurement error correlation, and low population composite reliability are the increased standard errors associated with the modification outweighed by a smaller bias. These findings are regarded as initial evidence that original PLSc is comparatively robust with respect to misspecification of the structure of measurement error correlations within blocks of indicators.

Originality/value

Introducing and investigating a new approach to address measurement error correlation within blocks of indicators in PLSc, this paper contributes to the ongoing development and assessment of recent advancements in partial least squares path modeling.

Open Access
Article
Publication date: 28 February 2023

Dennis Albert, Lukas Daniel Domenig, Philipp Schachinger, Klaus Roppert and Herwig Renner

The purpose of this paper is to investigate the applicability of a direct current (DC) hysteresis measurement on power transformer terminals for the subsequent hysteresis model…

Abstract

Purpose

The purpose of this paper is to investigate the applicability of a direct current (DC) hysteresis measurement on power transformer terminals for the subsequent hysteresis model parametrization in transformer grey box topology models.

Design/methodology/approach

Two transformer topology models with two different hysteresis models are used together with a DC hysteresis measurement via the power transformer terminals to parameterize the hysteresis models by means of an optimization. The calculated current waveform with the derived model in the transformer no-load condition is compared to the measured no-load current waveforms to validate the model.

Findings

The proposed DC hysteresis measurement via the power transformer terminals is suitable to parametrize two hysteresis models implemented in transformer topology models to calculate the no-load current waveforms.

Originality/value

Different approaches for the measurement and utilization of transformer terminal measurements for the hysteresis model parametrization are discussed in literature. The transformer topology models, derived with the presented approach, are able to reproduce the transformer no-load current waveform with acceptable accuracy.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Open Access
Article
Publication date: 10 May 2021

Akinloluwa Samuel Babalola

Values of parameters such as temperature, humidity, number of plastic products and the location of plastic injection moulds are required to determine the efficiency of plastic…

1010

Abstract

Purpose

Values of parameters such as temperature, humidity, number of plastic products and the location of plastic injection moulds are required to determine the efficiency of plastic injection moulds with a view to improving the quality of the outputs. This article determined the appropriate sensors for the measurement of these essential parameters in the most suitable form of representation of the data to aid a proficient analysis of the data.

Design/methodology/approach

The outputs of these sensors were obtained by connecting the sensors to the general-purpose input/output (GPIO) pins of a Raspberry Pi and writing a Python programme for the connected GPIO pins. The values of the outputs of these sensors were represented in a graphical form. The connection of the Raspberry Pi and the sensors were done with a full-sized breadboard and jumper wires. A computer-aided design (CAD) of the connections was produced using Fritzing software.

Findings

The appropriate sensors determined are MLX90614 infrared thermometer sensor, DHT11 humidity sensor, pixy2 vision sensor and Neo-6m GPS sensor. This study proposed that the sensors analytic system be applied on an industrial plastic injection mould to measure and display the various parameters of the injection moulds for the purpose of understanding and improving the performance of the injection mould

Originality/value

An electronic system that provides the continuous values of essential parameters of a plastic injection mould in operation.

Details

Frontiers in Engineering and Built Environment, vol. 1 no. 1
Type: Research Article
ISSN: 2634-2499

Keywords

Content available
Article
Publication date: 1 March 2001

43

Abstract

Details

Sensor Review, vol. 21 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Open Access
Article
Publication date: 24 September 2019

Jing Bai, Le Fan, Shuyang Zhang, Zengcui Wang and Xiansheng Qin

Both geometric and non-geometric parameters have noticeable influence on the absolute positional accuracy of 6-dof articulated industrial robot. This paper aims to enhance it and…

4478

Abstract

Purpose

Both geometric and non-geometric parameters have noticeable influence on the absolute positional accuracy of 6-dof articulated industrial robot. This paper aims to enhance it and improve the applicability in the field of flexible assembling processing and parts fabrication by developing a more practical parameter identification model.

Design/methodology/approach

The model is developed by considering both geometric parameters and joint stiffness; geometric parameters contain 27 parameters and the parallelism problem between axes 2 and 3 is involved by introducing a new parameter. The joint stiffness, as the non-geometric parameter considered in this paper, is considered by regarding the industrial robot as a rigid linkage and flexible joint model and adds six parameters. The model is formulated as the form of error via linearization.

Findings

The performance of the proposed model is validated by an experiment which is developed on KUKA KR500-3 robot. An experiment is implemented by measuring 20 positions in the work space of this robot, obtaining least-square solution of measured positions by the software MATLAB and comparing the result with the solution without considering joint stiffness. It illustrates that the identification model considering both joint stiffness and geometric parameters can modify the theoretical position of robots more accurately, where the error is within 0.5 mm in this case, and the volatility is also reduced.

Originality/value

A new parameter identification model is proposed and verified. According to the experimental result, the absolute positional accuracy can be remarkably enhanced and the stability of the results can be improved, which provide more accurate parameter identification for calibration and further application.

Details

Industrial Robot: the international journal of robotics research and application, vol. 47 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Open Access
Article
Publication date: 8 July 2020

Alberto Sardi, Enrico Sorano, Alberto Ferraris and Patrizia Garengo

The literature highlights the relevance of performance measurement and management system in small and medium enterprises (SMEs) to face the current competitive environment…

3757

Abstract

Purpose

The literature highlights the relevance of performance measurement and management system in small and medium enterprises (SMEs) to face the current competitive environment. However, a number of studies investigate how performance measurement and management system is effective for evolving and how contingency factors could influence this change. Newer experiences are sporadic and rarely investigated by researchers and practitioners. The purpose of this study is to identify the feasible evolutionary path of performance measurement and management system in leading SMEs to respond to current business challenges. Furthermore, it aims to contribute to the understanding of the role of key contingency factors influencing this evolution.

Design/methodology/approach

A longitudinal case study, based on retrospective and real-time investigations, is performed to investigate the primary evolutions of the performance measurement and management system and its key determinants.

Findings

The findings highlight two evolution paths, increasing the maturity of performance measurement. The first path highlights a strong command and control of performance management; the second path shows a democratic and participative of performance management. Moreover, management information system, organizational culture and management style are highlighted as key contingency factors in the change of performance management.

Originality/value

The authors contribute to knowledge in performance measurement field, showing how the efforts for developing performance measurement and management system in a leading SME could determine two different evolutionary paths. Furthermore, the paper describes the increasing role of organizational culture, management style and management information system in performance management evolution, as well as the relevance of online chats and social media in performance management activities.

Details

Measuring Business Excellence, vol. 24 no. 4
Type: Research Article
ISSN: 1368-3047

Keywords

Access

Only content I have access to

Year

Content type

Article (2497)
1 – 10 of over 2000