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Abstract
Purpose – The purpose of this paper is to investigate an alternative to established hysteresis models.
Design/methodology/approach – Different mathematical representations of the magnetic hysteresis
are compared and some differences are briefly discussed. After this, the application of the T(x) function is
presented and an inductor model is developed. Implementation details of the used transient circuit simulator
code are further discussed. From real measurement results, parameters for the model are extracted. The
results of the final simulation are finally discussed and compared tomeasurements.
Findings – The T(x) function possesses a fast mathematical formulation with very good accuracy. It is
shown that this formulation is very well suited for an implementation in transient circuit simulator codes.
Simulation results using the developedmodel are in very good agreement with measurements.
Research limitations/implications – For the purpose of this paper, only soft magnetic materials were
considered. However, literature suggests, that the T(x) function can be extended to hard magnetic materials.
Investigations on this topic are considered as future work.
Originality/value – While the mathematical background of the T(x) function is very well presented in the
referenced papers, the application in a model of a real device is not very well discussed yet. The presented
paper is directly applicable to typical problems in the field of power electronics.
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1. Introduction
To consider non-linear inductors in circuit simulation, several approaches have shown good
results in the past. The simplest implementation only covers saturation by using a non-linear
BH-curves without any hysteresis effects. In (dos Santos et al., 2017) several mathematical
models are compared and their accuracy is estimated. It is shown that exponential and
hyperbolic functions are good candidates to represent the behavior of magnetic components.

By considering the magnetization such a simple model can be extended to include the
magnetic hysteresis. The Jiles–Atherton model presented in (Jiles and Atherton, 1984)
consists in its original form only of five parameters and gives reasonable results for major
and minor loops. Here, the anhysteretic magnetization is calculated using a hyperbolic
function – the Langevin function, shown in equation (2). This allows for much faster
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calculation than the classical Preisach model in (Preisach, 1935), where a large number of
independent elements need to be evaluated.

Especially for numerical simulation, energy-based models can provide benefits. Both the
Preisach and the Jiles-Atherton models are not naturally extending in three dimensions of
space, and e.g. dissipated and stored energies are not available at every instance in time. A
discussion of further differences is given in (Jacques et al., 2017).

The T(x) model on the other hand, extensively discussed in (Jeno†’s (2003) study, is not
fully based on existing theories. It can be understood as a very elegant mathematical
description of the magnetic hysteresis. Therefore, its parameters are considered dimension-
less and have no physical meaning.

While being not very well known, it is certainly very interesting for transient
simulations. The Brillouin-function, B(x), as well as its simplified form, the Langevin-
function, L(x), both suffer from poles at x=0 as can be easily seen in equations (1) and (2). In
contrast to these two functions, the formulation of the T(x)-function in equation (3) uses the
hyperbolic tangents. Hence, here, x= 0 does not require any special treatment:

B xð Þ ¼ C1 coth x� C2 coth C3 � xð Þ (1)

L xð Þ ¼ C1 coth C2 � xð Þ � C3

x
(2)

T xð Þ ¼ C1xþ C2 tanh C3 � xð Þ (3)

A comparison of all three functions is given in Figure 1. Here, for B(x) the constants C1, C2
and C3 were set to 1. The constants of the other two functions were fitted to match the B(x)
function as accurately as possible.

Another benefit of theT(x)-function is the existence of an exact inverse function.
Furthermore, it is shown (Jeno†, 2003) that with proper choices of constants, the results of

models based on the T(x)-function can be expected to closely match those of the widely
accepted Preisach model.

Figure 1.
Comparison of the
B(x), L(x) andT(x)
functions
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The basic T(x) function is suitable for soft magnetic materials only. However (Dospial et al.,
2014), shows an extension to hard magnetic materials by using T(x) function as a base
function of a series.

2. Modeling of the magnetic hysteresis
The basic principles of this model are discussed using a normalized description of the
magnetic hysteresis in order to make it easier for the reader to follow the equations. By
shifting theT(x) function, the basic magnetic hysteresis loops are formed:

fþ ¼ tanh x� a0ð Þ þ A0 � xþ b (4)

f� ¼ tanh xþ a0ð Þ þ A0 � x� b (5)

with

b ¼ tanh xm þ a0ð Þ � tanh xm � a0ð Þ
2

(6)

The functions fþ and f � are the ascending and descending branch branches, respectively.
xm defines the minor loop and a0 corresponds to the magnetic remanence. To obtain the
virgin curve, simply, the mean value of these two functions is calculated:

f ¼ tanh x� a0ð Þ þ tanh xþ a0ð Þ þ 2A0 � x
2

(7)

An example of the resulting curves is given in Figure 2.
Reversal curves, needed to describe the hysteresis behavior in case of an arbitrarily

changing exciting magnetic field, are more complex. Some examples for the resulting
movements are shown in Figure 3.

Figure 2.
Major (xm= 4), minor

(xm= 2) and virgin
curves for a0 = 1.75

andA0 = 0.05
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Starting from x = x0, the descending branch of the minor loop defined by xm = 2 is followed.
At x = x1 the direction is reversed. The starting point of this new ascending curve needs to
coincide with the reversal point at x = x1. Furthermore, this new curve needs to reach the
starting point x0 at x = xm. This can be accomplished by a scaled constant. Equation (4) will
therefor get the form:

fþ;reversal ¼ tanh x� a0ð Þ þ A0 � xþ b

þ c � H x; xr; xmð Þ
(8)

where c is the difference of the ascending and descending branch values at x = x1 and the
function H() is a scaling function ranging from 1 (at x = xr) to 0 (at x = xm) with the
parameters x, xr and xm.

To defineH() (Jeno†, 2003), suggests a hyperbolic function.
This finally leads to:

fþ;reversal ¼ tanh x� a0ð Þ þ A0 � xþ bþ c

� tanh xm � a0ð Þ � tanh x� a0ð Þ
tanh xm � a0ð Þ � tanh xr � a0ð Þ (9)

with

c ¼ f� xrð Þ � fþ xrð Þ

This reversal curve can now be followed to x = x2 = x0 – the start of the minor loop.
Increasing of x beyond x2 to x = x3, will cause a change to the virgin curve. Any change of
direction on the virgin curve gives a new minor loop to be followed. However, if the reversal
curve leading from x1 to x2 is interrupted at x ¼ x20, a new value for xm needs to be
calculated to start moving on a new minor loop. To accomplish that, equation (10) has to be
solved with regard to xm:

Figure 3.
Reversal on a
symmetrical minor
loop (xm= 2) at x=
– 1 and extension to
the major (xm= 4)
loop for a0 = 1.75 and
A0 = 0.05
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fþ;reversal x20ð Þ ¼ tanh xr2 þ a0ð Þ þ A0 � xr2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
f�

� tanh xm þ a0ð Þ � tanh xm þ a0ð Þ
2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
b

(10)

To simplify the equations we define:

d ¼ fþ;reversal x20ð Þ � tanh x20 þ a0ð Þ
þ A0 � x20

(11)

This now gives:

xm ¼ atanh
d

tanh d � a0ð Þ2 � tanh a0ð Þ
� 1

tanh d � a0ð Þ � 1

!1
2

0
@

1
A

0
@ (12)

The minor loop defined by this new value of xm leads to the points x30 and x40. A much more
detailed discussion of the construction of first- and higher-order reversal curves is given in
chapter 5 of (Jeno†, 2003). Below the T(x) model is applied to magnetic hysteresis. The
magnetic flux density B corresponds to the value of the T(x) function whereas the magnetic
fieldH is its parameter x (i.e. for the ascending branch simplyB(H) = fþwith x=H).

3. Simulation environment
The circuit simulation code adopting the presented hysteresis model implements a simple,
yet effective strategy.

Instead of a classic sparse matrix approach, as implemented in SPICE, each model is
presented with vectors containing the node voltages (V), the residual currents (R), the
results of an integration operation as well as vectors holding generic values representing e.g.
model states. The model updates elements in R, representing the nodes it is connected to,
and sets the derivative of its associated integration variables. After all models have been
executed, each element ofR represents the sum of all branch currents of the particular node.
By the means of a quasi-newton algorithm on the node voltage vector, the residual current
vector R is minimized using a least-squares approach to fulfill Kirchhoff’s current law.
While losing the versatility of the classic SPICE approach (i.e. not all branch relations can be
implemented), the source code is simplified a lot. However, considering real components
instead of ideal ones, this shortcoming nearly vanishes since series resistors will be present
in all models.

Integration methods implemented include forward-Euler, backward-Euler and bilinear
algorithms. These can be selected at run-time. For the presented simulations, a bilinear
integration was used for accuracy and stability reasons.

4. Inductor model
As discussed above, some branch relations cannot get implemented with the available
simulation code. By adding a resistor, representing the losses in the copper wire, in series to
the inductor, as shown in Figure 4, this problem is overcome. For the purpose of this paper,
further parasitic properties, such as the capacitance of the winding and effects showing up
at higher frequencies, are neglected.
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The T(x) function provides a relation between the magnetic flux density B and the
magnetic field strength H. For this reason, an application of Faraday’s Law of Induction
presents a straightforward approach to model the inductor. Additionally, this gives useful
results for the process of parameter identification frommeasurements as shown later on.

In datasheets of magnetic cores, usually the effective cross-section area Aeff and the
effective length of the magnetic path leff are given. This allows for an application of the
common approximations:

U ¼ B � Aeff (13)

and

H ¼ N � I
le

(14)

whereU is the magnetic flux andN is the number of turns of the winding.
Applying these approximations to Faraday’s Law gives:

vL ¼ N
df
dt

¼ N � Aeff
dB
dt

¼ N � Aeff
dB � dH
dt � dH

¼ N � Aeff
dB
dH

� dH
dt

� �

¼ N2 � Aeff

leff
� dB
dH

� di
dt

(15)

Figure 4.
Circuit representation
implemented
inductor model
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This result is, besides the use of dB
dH as the magnetic permeability m , well known and

represents the approximation applicable to long, thin inductors. However, the crucial
parameters Aeff and leff are given in datasheets and the applications notes to different
magnetic materials point toward using the given approximations. This suggests that model
errors were already considered in these parameters. Equation (15) is further rewritten to give
the current i in its differential form:

di
dt

¼ vL � leff
N2 � Aeff � dBdH

(16)

By utilizing the integration facilities of the simulator, the current I through the inductor can
be obtained for every time-step. However, in order to do so, the term dB

dH needs further
discussion, since, for obvious reasons, each curve will need to be treated differently. In
contrast to the discussion above, the presented model implements the not normalized form
of theT(x) function:

BðHÞasc ¼ B0 � tanh C0 H � a0ð Þð Þ þ A0H þ b (17)

BðHÞdes ¼ B0 � tanh C0 H þ a0ð Þð Þ þ A0H � b (18)

B Hð Þvir ¼ B Hð Þasc þ B Hð Þdes
2

(19)

with

b ¼ B0
tanh C0 Hm þ a0ð Þð Þ � tanh C0 Hm � a0ð Þð Þ

2
(20)

Here, B(H)asc, B(H)des, B(H)vir represent the ascending and descending branch as well as the
virgin curve, respectively. The constants A0, ao, B0, C0 have no direct physical meaning.
Their values are results of a parameter fitting process using measurement values. In
contrast to the previous constants, Hm is changing during the simulation and defines the
maximum of themagnetic field strength of the minor loop.

From these definitions, the needed derivatives can be obtained. This gives for B(H)vir:

dBvir

dH
¼ B0 � C0 � coth C0 � H þ a0ð Þð Þð Þ2

þ coth C0 � H � a0ð Þð Þð Þ2 þ A0

(21)

As discussed above, the functions defining the ascending and descending branches need to
be modified to represent reversal curves. Applying the introduced constant c and the scaling
functionH() to the not normalized functions gives:

BðHÞasc ¼ B0 � tanh C0 H � a0ð Þð Þ þ A0H þ b

� c tanh Hm � a0ð Þ � tanh H � a0ð Þ
tanh Hm � a0ð Þ � tanh Hr � a0ð Þ (22)
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and

BðHÞdes ¼ B0 � tanh C0 H þ a0ð Þð Þ þ A0H � b

� c tanh Hm � a0ð Þ � tanh H � a0ð Þ
tanh Hm � a0ð Þ � tanh Hr � a0ð Þ (23)

This adds the constants c, the difference of the magnetic flux density between the ascending
and descending branch at the reversal, andHr, the magnetic field strength at the reversal, to
the list of changing constants during the simulation.

Calculating the term dB
dH for these branch functions gives:

dBasc

dH
¼ B0 � C0 � coth C0 � H � a0ð Þð Þð Þ2 þ A0

� c � C0 � coth C0 � H � a0ð Þð Þð Þ2
tanh C0 � Hm � a0ð Þð Þ � tanh C0 � Hr � a0ð Þð Þ

(24)

and

dBdes

dH
¼ B0 � C0 � coth C0 � H þ a0ð Þð Þð Þ2 þ A0

� c � C0 � coth C0 � H þ a0ð Þð Þð Þ2
tanh C0 � Hm þ a0ð Þð Þ � tanh C0 � Hr þ a0ð Þð Þ

(25)

To finally calculate the derivative of the current through the inductor, the voltage across it
needs to be defined. Since the current I, the result of the last integration operation, is an input
parameter to the model, we can simply apply Kirchhoff’s voltage law to define the last
unknown vl:

0 ¼ �vl � vR þ V

vL ¼ v� vR

vL ¼ v� I � R
(26)

The different constants used in this model can be separated into two categories:
(1) constants changing during execution; and
(2) real constants.

Real constants are the parameters of the T(x) function (A0, ao, B0, C0) as well as physical
parameters of the core and winding (R, N, le, Aeff). In contrast to these, on certain events, the
magnetic field strength defining the minor loop (Hm), the magnetic field strength at reversal
(Hr) as well as the constant used to shift the reversal curve (c) are changing. These conditions
need to be discussed next since they also dictate the choice of the function for the term dB

dH.

5. Model state machine
The behavior during the simulation is governed by a finite state machine. Its basic structure
is shown in Figure 5.
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The three states represent the virgin curve (V) as well as the ascending (A) and descending
(D) branches of the hysteresis loop. When entering one of these states, the function
associated with the particular state is selected for the term dB

dH. The edges between these
states represent changes of direction and changes of exciting magnetic field strength Hm

defining the minor loop.
On the virgin curve, the current must monotonically increase or decrease. Otherwise, the

state changes to either the descending (edge 1) or the ascending (edge 2) branch. This change
is indicated by a change in the sign of didt with respect to the current I. For positive currents, a
negative di

dt would call for a change of the state while for negative currents a positive
di
dt would

do so. Since di
dt is one of the results calculated by the model, this check can be efficiently

implemented by simply evaluating I � didt > 0. When changing to a different state, the current
magnetic field strength gives a new value for the variableHm.

The edges 3 and 5 represent changes back to the virgin curve. As explained above this
only occurs if jH j > jHmj. Both values are available to the model.

Changes from the ascending to the descending branch and vice versa, are similar to the
virgin curve. Again, evaluating I � didt > 0 indicates a change along the edges 4 (ascending to
descending) and 6 (descending to ascending). If a change happens before reaching Hm, the
constants c and Hr need to be updated. This has already been explained above for
equation (9).

6. Model initialization
Figure 5 suggests that the model can start not only at the virgin curve but also has the
ability to start on the ascending and descending branches as well. This is useful to take, e.g.
the residual magnetization into account. In this case, the initial minor loop parameters are
calculated from the inverse functions of ascending and descending branches during the
initialization phase of the model. For positive residual flux density, the simulation starts on
the descending branch and for negative ones on the ascending branch respectively.

ThereforeHm for the state D in case of positive residual magnetization is:

Figure 5.
State machine
governing the

hysteresis model
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Hm ¼
atanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� B

B0 tanh3 C0a0ð Þ � tanh C0a0ð Þ
� �

� Btanh2 C0a0ð Þ

s
C0

(27)

A negative magnetization results in a start in state A andHm gets:

Hm ¼ �
atanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B

B0 tanh3 C0a0ð Þ � tanh C0a0ð Þ
� �

þ Btanh2 C0a0ð Þ

s
C0

(28)

7. Parameter identification
To verify the presented model, a small inductor was prepared consisting of two ungapped
E/25/13/7 cores out of 3C94 material and 10 turns of 1mm magnet wire. Additionally, a
winding consisting of 3 turns of RG213 coaxial cable was used to indirectly measure the
magnetic flux density. The outer conductor of the coaxial cable was connected to ground on
one end to form an electrostatic shield. Connecting the winding formed by the inner
conductor to an R-C network forming a lowpass filter, the magnetic flux density can be
measured after some considerations.

The construction of the inductor is shown in Plate 1. It is to be noted that in contrast to
image, the inductor used for the simulations discussed below has no air gap. A 3d-printed
frame compresses both halves of the core to ensure repeatable measurement results.

Plate 1.
Example inductor
with measurement
winding
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Faraday’s law of induction suggests that no constant magnetic field strength can be
measured with this technique. In addition to that, the integrator, formed by the low pass
filter introduces a phase error. The number of turns, the cross-section area of the core and
the attenuation of the filter need to be considered to calculate the magnetic field B from this
signal. To minimize the errors, the load at the measurement winding needs to be minimized;
hence, the resistor value in the low pass filter needs to be as high as possible.

For practical reasons, the lowpass was built from a 1MX resistor and a 10nF capacitor.
Bigger resistors need special care since contaminations of the circuit due to e.g. touching it
may result in huge measurement errors. The capacitor was chosen so minimize the phase
error, thus this was further neglected. Another criterion to be considered for the capacitor it
the voltage dependency of the dielectric material. Here a C0G type capacitor was used. An
amplification by a factor of 100 was used to a get signal to noise ratio of the measured signal.
The circuit is shown in Figure 6. A 4-quadrant linear amplifier, capable of providing up to
40A and 10V, was used to excite the inductor. The test signals were generated by a
programmable arbitrary-waveform-generator (AWG).

With the effective cross section areaAeff given in the datasheet of the core we get:

B ¼ C
Û
Aeff

(29)

where Û is the signal after the integration and C represents the combined attenuation of the
lowpass filter, the amplifier and the number of turns of the measurement winding. In
addition to the voltage at the measurement winding, the current through the inductor was
measured using a current clamp. Themagnetic field strength is calculated using:

H ¼ N � I
le

(30)

where le is the effective length of the magnetic path andN is the number of turns of the main
winding.

Both signals were captured by a digital oscilloscope while applying a sinusoidal current,
high enough to fully saturate the inductor. The model parameters for the branches of the
major loop were fitted to these results. Some experiments showed that a genetic algorithm
yields to good results while being very robust against the introduced measurement errors
and noise. The choice of the optimization algorithm is uncritical since the parameters for the
simulation are only calculated once. Figure 7 shows the measured data as well as the fitted
major loop. The last missing model parameter, the series resistance, was measured using an
LCRmeter.

Figure 6.
Integration circuit for
magnetic flux density

measurement

nc

1MΩ

100kΩ
1kΩ

10nF

MCP6V27
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8. Simulation results
8.1 Major loop
In addition to the current through the main winding of the inductor, the voltage across its
terminal was also measured when collecting data for the parameter identification process. The
measured current was post-processed to remove as much measurement noise as possible. To do
so, first, a median filter over 11 samples was used to reduce outliers. After that, a first-order
lowpass filter with a corner frequency of 10 times the frequency of the exciting current was
applied. In the simulation, the measured current was injected into the inductor. Between the
samples, an interpolation using a Lanczos filter kernel was used. This was done to further reduce
the effects ofmeasurement noise and to prevent oscillations in the simulation code (Figure 8).

As shown in Figure 10, simulation and measurement show a very good agreement. The
noise on the simulated waveform, especially visible in the non-saturated region, was tracked
down to the remaining noise in themeasured current waveform.

8.2 Major and minor loop
In a further test, the more complex waveform in Figure 9 was used to excite the inductor.
The previous simulation showed that measurement noise greatly degrades the simulation

Figure 7.
Measurement of the
B-H curve and
fitted model
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results. Therefore, in this test, the waveform data provided to the AWG was used in the
simulation instead of the measured data. As a result, the simulation in Figure 10 has less
noise and runs faster.

To show the capability of simulating minor loops, the major and a minor loop was
extracted from the transient simulation results. Figure 11 shows the BH-curves and the
corresponding measurements. Here, verification was not possible due to the measurement
noise.

9. Conclusion
This paper demonstrates the feasibility of using theT(x) function in transient simulations.

It was shown that a rather simple model can be used to achieve simulation results in a
good agreement to measurements.

An implementation of a more generalized form to support hard magnetic materials, as
presented in (Dospial et al., 2014), an investigation whether the presented model also leads to
accurate estimations of losses in the magnetic core and benchmarking against other
hysteresis models present topics for future work.

Figure 9.
Complex excitation
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Figure 11.
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