Search results

1 – 10 of over 2000
Article
Publication date: 15 March 2024

Mohamed Slamani, Hocine Makri, Aissa Boudilmi, Ilian A. Bonev and Jean-Francois Chatelain

This research paper aims to optimize the calibration process for an ABB IRB 120 robot, specifically for robotic orbital milling applications, by introducing and validating the use…

Abstract

Purpose

This research paper aims to optimize the calibration process for an ABB IRB 120 robot, specifically for robotic orbital milling applications, by introducing and validating the use of the observability index and telescopic ballbar for accuracy enhancement.

Design/methodology/approach

The study uses the telescopic ballbar and an observability index for the calibration of an ABB IRB 120 robot, focusing on robotic orbital milling. Comparative simulation analysis selects the O3 index. Experimental tests, both static and dynamic, evaluate the proposed calibration approach within the robot’s workspace.

Findings

The proposed calibration approach significantly reduces circularity errors, particularly in robotic orbital milling, showcasing effectiveness in both static and dynamic modes at various tool center point speeds.

Research limitations/implications

The study focuses on a specific robot model and application (robotic orbital milling), limiting generalizability. Further research could explore diverse robot models and applications.

Practical implications

The findings offer practical benefits by enhancing the accuracy of robotic systems, particularly in precision tasks like orbital milling, providing a valuable calibration method.

Social implications

While primarily technological, improved robotic precision can have social implications, potentially influencing fields where robotic applications are crucial, such as manufacturing and automation.

Originality/value

This study’s distinctiveness lies in advancing the accuracy and precision of industrial robots during circular motions, specifically tailored for orbital milling applications. The innovative approach synergistically uses the observability index and telescopic ballbar to achieve these objectives.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 7 May 2024

Zhouxiang Jiang, Shiyuan Chen, Yuchen Zhao, Zhongjie Long, Bao Song and Xiaoqi Tang

In typical model-based calibration, linearization errors are derived inevitably, and non-negligible negative impact will be induced on the identification results if the rotational…

Abstract

Purpose

In typical model-based calibration, linearization errors are derived inevitably, and non-negligible negative impact will be induced on the identification results if the rotational kinematic errors are not small enough or the lengths of links are too long, which is common in the industrial cases. Thus, an accurate two-step kinematic calibration method minimizing the linearization errors is presented for a six-DoF serial robot to improve the calibration accuracy.

Design/methodology/approach

The negative impact of linearization on identification accuracy is minimized by removing the responsible linearized kinematic errors from the complete kinematic error model. Accordingly, the identification results of the dimension-reduced new model are accurate but not complete, so the complete kinematic error model, which achieves high identification accuracy of the rest of the error parameters, is combined with this new model to create a two-step calibration procedure capable of highly accurate identification of all the kinematic errors.

Findings

The proportions of linearization errors in measured pose errors are quantified and found to be non-negligible with the increase of rotational kinematic errors. Thus, negative impacts of linearization errors are analyzed quantitatively in different cases, providing the basis for allowed kinematic errors in the new model. Much more accurate results were obtained by using the new two-step calibration method, according to a comparison with the typical methods.

Originality/value

This new method achieves high accuracy with no compromise on completeness, is easy to operate and is consistent with the typical method because the second step with the new model is conveniently combined without changing the sensors or measurement instrument setup.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Open Access
Article
Publication date: 6 May 2024

Andreas Gschwentner, Manfred Kaltenbacher, Barbara Kaltenbacher and Klaus Roppert

Performing accurate numerical simulations of electrical drives, the precise knowledge of the local magnetic material properties is of utmost importance. Due to the various…

Abstract

Purpose

Performing accurate numerical simulations of electrical drives, the precise knowledge of the local magnetic material properties is of utmost importance. Due to the various manufacturing steps, e.g. heat treatment or cutting techniques, the magnetic material properties can strongly vary locally, and the assumption of homogenized global material parameters is no longer feasible. This paper aims to present the general methodology and two different solution strategies for determining the local magnetic material properties using reference and simulation data.

Design/methodology/approach

The general methodology combines methods based on measurement, numerical simulation and solving an inverse problem. Therefore, a sensor-actuator system is used to characterize electrical steel sheets locally. Based on the measurement data and results from the finite element simulation, the inverse problem is solved with two different solution strategies. The first one is a quasi Newton method (QNM) using Broyden's update formula to approximate the Jacobian and the second is an adjoint method. For comparison of both methods regarding convergence and efficiency, an artificial example with a linear material model is considered.

Findings

The QNM and the adjoint method show similar convergence behavior for two different cutting-edge effects. Furthermore, considering a priori information improved the convergence rate. However, no impact on the stability and the remaining error is observed.

Originality/value

The presented methodology enables a fast and simple determination of the local magnetic material properties of electrical steel sheets without the need for a large number of samples or special preparation procedures.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 43 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 7 March 2023

Adhi Indra Hermanu, Diana Sari, Mery Citra Sondari and Muhammad Dimyati

This paper aims to identify and classify the parameters that construct the input, processes, output, productivity and outcome variables that affect performance. These parameters…

214

Abstract

Purpose

This paper aims to identify and classify the parameters that construct the input, processes, output, productivity and outcome variables that affect performance. These parameters are used in the evaluation model to measure research performance in universities so that they can be used as the basis for making leadership policies both at the national and institutional levels.

Design/methodology/approach

The design of this research is a quantitative research method using a survey questionnaire that was sent to the heads of research institutions at universities in Indonesia. To obtain these parameters, a test for determining the value of the loading factor was used.

Findings

The authors found that input variable parameters consisted of 10 parameters; process variable consisted of 22 parameters; output variable parameters consisted of 8 parameters; productivity variable consisted of 4 parameters; and outcome variable parameters consisted of 10 parameters.

Originality/value

One approach to obtain parameters is through systems theory, where every element that makes up the organization contributes to the achievement of goals. This study attempted to develop parameters in the performance appraisal model of systems theory-based research institutions that are adapted to trends in the direction of research in universities. These parameters are based on aspects of input, process, output, productivity and outcome.

Details

Journal of Science and Technology Policy Management, vol. 15 no. 4
Type: Research Article
ISSN: 2053-4620

Keywords

Article
Publication date: 9 July 2024

Adrian Pietruszka, Paweł Górecki and Agata Skwarek

This paper aims to investigate the influence of composite solder joint preparation on the thermal properties of metal-oxide-semiconductor field-effect transistors (MOSFETs) and…

Abstract

Purpose

This paper aims to investigate the influence of composite solder joint preparation on the thermal properties of metal-oxide-semiconductor field-effect transistors (MOSFETs) and the mechanical strength of the soldered joint.

Design/methodology/approach

Reinforced composite solder joints with the addition of titanium oxide nanopowder (TiO2) were prepared. The reference alloy was Sn99Ag0.3Cu0.7. Reinforced joints differed in the weight percentage of TiO2, ranging from 0.125 to 1.0 Wt.%. Two types of components were used for the tests. The resistor in the 0805 package was used for mechanical strength tests, where the component was soldered to the FR4 substrate. For thermal parameters measurements, a power element MOSFET in a TO-263 package was used, which was soldered to a metal core printed circuit board (PCB) substrate. Components were soldered in batch IR oven.

Findings

Shear tests showed that the addition of titanium oxide does not significantly increase the resistance of the solder joint to mechanical damage. Titanium oxide addition was shown to not considerably influence the soldered joint’s mechanical strength compared to reference samples when soldered in batch ovens. Thermal resistance Rthj-a of MOSFETs depends on TiO2 concentration in the composite solder joint reaching the minimum Rthj at 0.25 Wt.% of TiO2.

Research limitations/implications

Mechanical strength: TiO2 reinforcement shows minimal impact on mechanical strength, suggesting altered liquidus temperature and microstructure, requiring further investigation. Thermal performance: thermal parameters vary with TiO2 concentration, with optimal performance at 0.25 Wt.%. Experimental validation is crucial for practical application. Experimental confirmation: validation of optimal concentrations is essential for accurate assessment and real-world application. Soldering method influence: batch oven soldering may affect mechanical strength, necessitating exploration of alternative methods. Thermal vs mechanical enhancement: while TiO2 does not notably enhance mechanical strength, it improves thermal properties, highlighting the need for balanced design in power semiconductor assembly.

Practical implications

Incorporating TiO2 enhances thermal properties in power semiconductor assembly. Optimal concentration balancing thermal performance and mechanical strength must be determined experimentally. Batch oven soldering may influence mechanical strength, requiring evaluation of alternative techniques. TiO2 composite solder joints offer promise in power electronics for efficient heat dissipation. Microstructural analysis can optimize solder joint design and performance. Rigorous quality control during soldering ensures consistent thermal performance and mitigates negative effects on mechanical strength.

Social implications

The integration of TiO2 reinforcement in solder joints impacts thermal properties crucial for power semiconductor assembly. However, its influence on mechanical strength is limited, potentially affecting product reliability. Understanding these effects necessitates collaborative efforts between researchers and industry stakeholders to develop robust soldering techniques. Ensuring optimal TiO2 concentration through experimental validation is essential to maintain product integrity and safety standards. Additionally, dissemination of research findings and best practices can empower manufacturers to make informed decisions, fostering innovation and sustainability in electronic manufacturing processes. Ultimately, addressing these social implications promotes technological advancement while prioritizing consumer trust and product quality in the electronics industry.

Originality/value

The research shows the importance of the soldering technology used to assemble MOSFET devices.

Details

Soldering & Surface Mount Technology, vol. 36 no. 4
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 24 July 2024

Arthur de Carvalho Cruzeiro, Leonardo Santana, Danay Manzo Jaime, Sílvia Ramoa, Jorge Lino Alves and Guilherme Mariz de Oliveira Barra

This study aims to evaluate in situ oxidative polymerization of aniline (Ani) as a post-processing method to promote extrusion-based 3D printed parts, made from insulating…

Abstract

Purpose

This study aims to evaluate in situ oxidative polymerization of aniline (Ani) as a post-processing method to promote extrusion-based 3D printed parts, made from insulating polymers, to components with functional properties, including electrical conductivity and chemical sensitivity.

Design/methodology/approach

Extrusion-based 3D printed parts of polyethylene terephthalate modified with glycol (PETG) and polypropylene (PP) were coated in an aqueous acid solution via in situ oxidative polymerization of Ani. First, the feedstocks were characterized. Densely printed samples were then used to assess the adhesion of polyaniline (PAni) and electrical conductivity on printed parts. The best feedstock candidate for PAni coating was selected for further analysis. Last, a Taguchi methodology was used to evaluate the influence of printing parameters on the coating of porous samples. Analysis of variance and Tukey post hoc test were used to identify the best levels for each parameter.

Findings

Colorimetry measurements showed significant color shifts in PP samples and no shifts in PETG samples upon pullout testing. The incorporation of PAni content and electrical conductivity were, respectively, 41% and 571% higher for PETG in comparison to PP. Upon coating, the surface energy of both materials decreased. Additionally, the dynamic mechanical analysis test showed minimal influence of PAni over the dynamic mechanical properties of PETG. The parametric study indicated that only layer thickness and infill pattern had a significant influence on PAni incorporation and electrical conductivity of coated porous samples.

Originality/value

Current literature reports difficulties in incorporating PAni without affecting dimensional precision and feedstock stability. In situ, oxidative polymerization of Ani could overcome these limitations. However, its use as a functional post-processing of extrusion-based printed parts is a novelty.

Details

Rapid Prototyping Journal, vol. 30 no. 8
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 4 July 2024

Hyo Jung (Julie) Chang, Mohammad Abu Nasir Rakib, Md Kamrul Hasan Foysal and Jo Woon Chong

The comfort of apparel is not only a feeling of perception but also a tangible measure. The fit and fabric of clothing can exert a perception of comfort for the wearer, whereas…

Abstract

Purpose

The comfort of apparel is not only a feeling of perception but also a tangible measure. The fit and fabric of clothing can exert a perception of comfort for the wearer, whereas actual comfort largely depends on physiological and emotional soothing. However, there is still no solid work on connecting the bridge between physiological and emotional feelings to the comfort of clothing. In this study, we have conceptualized, formulated and proven the relation between physiological and emotional parameters with clothing fit and fabric to find the true comfort of the wearer.

Design/methodology/approach

A mixed-method research design using physiological and emotional parameters for different fabric and fit combinations were used for this study. The physiological comfort parameters (i.e. heart rate and respiration rate) are extracted from the subjects using gold-standard clinical devices for various fit and fabric combinations. For the emotional response, a survey was conducted for the same subjects wearing all the fit and fabric combinations. Statistical analysis and modeling were performed to obtain the results.

Findings

Physiological indicators such as heart rate are closely linked with user comfort. Due to the limitations in environmental control, the physiological changes obtained did not significantly vary for different fabric and fit combinations of the clothing. However, a significant change in emotional response indicated a definite relationship between different fabric and fit types. Based on the participants’ responses, weather conditions, size of the clothing item, types of fabrics and style also influence the participants’ choice of clothing.

Originality/value

The research was conducted to discover the relation between true comfort (physiological and emotional parameters) and clothing (fit and fabric), which is unique to the field. This study closes the gap and builds up the relationship, which can help introduce clothing comfort to users in the future. The findings of this study help us understand how fabric types (natural or synthetic) and clothing fit types (loose or fitted) can affect physiological and emotional responses, which can provide the consumer with satisfactory clothing with the suitable properties needed.

Details

International Journal of Clothing Science and Technology, vol. 36 no. 5
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 3 July 2024

Mert Gülçür, Dmitry Isakov, Jérôme Charmet and Gregory J. Gibbons

This study aims to investigate the demoulding characteristics of material-jetted rapid mould inserts having different surface textures for micro-injection moulding using in-line…

Abstract

Purpose

This study aims to investigate the demoulding characteristics of material-jetted rapid mould inserts having different surface textures for micro-injection moulding using in-line measurements and surface metrology.

Design/methodology/approach

Material-jetted inserts with the negative cavity of a circular test product were fabricated using different surface finishes and printing configurations, including glossy, matte and vertical settings. In-line measurements included the recording of demoulding forces at 10 kHz, which was necessary to capture the highly-dynamic characteristics. A robust data processing algorithm was used to extract reliable demoulding energies per moulding run. Thermal imaging captured surface temperatures on the inserts after demoulding. Off-line measurements, including focus variation microscopy and scanning electron microscopy, compared surface textures after a total of 60 moulding runs.

Findings

A framework for capturing demoulding energies from material-jetted rapid tools was demonstrated and compared to the literature. Glossy surfaces resulted in significantly reduced demoulding forces compared to the industry standard steel moulds in the literature and their material-jetted counterparts. Minimal changes in the surface textures of the material-jetted inserts were found, which could potentially permit their prolonged usage. Significant correlations between surface temperatures and demoulding energies were demonstrated.

Originality/value

The research presented here addresses the very topical issue of demoulding characteristics of soft, rapid tools, which affect the quality of prototyped products and tool durability. This was done using state-of-the-art, high-speed sensing technologies in conjunction with surface metrology and their durability for the first time in the literature.

Details

Rapid Prototyping Journal, vol. 30 no. 7
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 18 April 2024

Budi Setiawan, Umi Muawanah, Addin Maulana, Fauziah Khoiriyani, Marhanani Tri Astuti and Imam Nur Hakim

This study aims to analyze the capacity of ecotourists to exhibit behavior that aligns with the ecotourist scale using the Rasch model measurement.

79

Abstract

Purpose

This study aims to analyze the capacity of ecotourists to exhibit behavior that aligns with the ecotourist scale using the Rasch model measurement.

Design/methodology/approach

The data was gathered using an online survey incorporating the five tenets of ecotourism using a seven-point rating scale on domestic tourists in Indonesia. Descriptive statistics, cross-tabulation and Rasch model measurement were used to analyze the data.

Findings

The ecotourist identification scale measurement items were reliable and satisfactory. The most challenging behavior for ecotourists was using the services of a tour guide who was concerned about the environment. Meanwhile, respecting cultural differences around the tourist destination was the most accessible behavior. Most respondents demonstrated a fit response pattern and satisfactorily met the validity and reliability criteria.

Research limitations/implications

This study did not compare ecotourists’ ability to behave by the type of conservation visited as its limitation. However, it provides a significant methodological contribution to developing a measurement of ecotourist behavior implemented in well-established behavioral theories.

Practical implications

Integrating ecotourism into education, incentivizing eco-friendly tourism practices, promoting awareness, supporting local businesses, respecting local values and ensuring safe travels.

Originality/value

To the best of the authors’ knowledge, this study is the first of its kind to be conducted in Indonesia. It uses a unique and innovative method to reveal the unobserved variables in ecotourists’ behavior. The findings confirm that tourists’ behaviors align with the five tenets of ecotourism.

Details

The Bottom Line, vol. 37 no. 2
Type: Research Article
ISSN: 0888-045X

Keywords

Article
Publication date: 19 September 2024

Ashish Arunrao Desai and Subim Khan

The investigation aims to improve Nd: YAG laser technology for precision cutting of carbon fiber reinforcing polymers (CFRPs), specifically those containing newly created resin…

Abstract

Purpose

The investigation aims to improve Nd: YAG laser technology for precision cutting of carbon fiber reinforcing polymers (CFRPs), specifically those containing newly created resin (NDR) from the polyethylene and polyurea group, is the goal of the study. The focus is on showing how Nd: YAG lasers may be used to precisely cut CFRP with NDR materials, emphasizing how useful they are for creating intricate and long-lasting components.

Design/methodology/approach

The study employs a systematic approach that includes complicated factorial designs, Taguchi L27 orthogonal array trials, Gray relational analysis (GRA) and machine learning predictions. The effects of laser cutting factors on CFRP with NDR geometry are investigated experimentally, with the goal of optimizing the cutting process for greater quality and efficiency. The approach employs data-driven decision-making with GRA, which improves cut quality and manufacturing efficiency while producing high-quality CFRP composites. Integration of machine learning models into the optimization process significantly boosts the precision and cost-effectiveness of laser cutting operations for CFRP materials.

Findings

The work uses Taguchi L27 orthogonal array trials for systematically explore the effects of specified parameters on CFRP cutting. The cutting process is then optimized using GRA, which identifies influential elements and determines the ideal parameter combination. In this paper, initially machining parameters are established at level L3P3C3A2, and the optimal machining parameters are determined to be at levels L3P2C3A3 and L3P2C1A2, based on predictions and experimental results. Furthermore, the study uses machine learning prediction models to continuously update and optimize kerf parameters, resulting in high-quality cuts at a lower cost. Overall, the study presents a holistic method to optimize CFRP cutting processes employing sophisticated techniques such as GRA and machine learning, resulting in better quality and efficiency in manufacturing operations.

Originality/value

The novel concept is in precisely measuring the kerf width and deviation in CFRP samples of NDR using sophisticated imaging techniques like SEM, which improves analysis and precision. The newly produced resin from the polyethylene and polyurea group with carbon fiber offers a more precise and comprehensive understanding of the material's behavior under different cutting settings, which makes it novel for kerf width and kerf deviation in their studies. To optimize laser cutting settings in real time while considering laser machining conditions, the study incorporates material insights into machine learning models.

Details

Multidiscipline Modeling in Materials and Structures, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1573-6105

Keywords

1 – 10 of over 2000