Search results

1 – 10 of over 3000
Article
Publication date: 15 February 2018

Damjana Celcar

The purpose of this paper is to investigate the thermo-physiological comfort of male business garments made of common textiles, as well as business clothing that contains phase…

Abstract

Purpose

The purpose of this paper is to investigate the thermo-physiological comfort of male business garments made of common textiles, as well as business clothing that contains phase change materials (PCMs) as a lining or outerwear material. In view of the fact that people wear business clothing throughout the whole day in different environmental conditions, this study investigate the effect of PCMs incorporated in male business clothing systems on the thermo-physiological comfort of the wearer under different cold environmental conditions.

Design/methodology/approach

The influence of particular business garments on the thermo-physiological comfort of the wearer during different physical activities and cold environmental temperatures was determined experimentally with the help of study participants, as a change of two physiological parameters: mean skin temperature and heart rate. A questionnaire and an assessment scale were also used in order to evaluate the wearer’s subjective feeling of comfort. In this investigation, all tests with study participants were performed under artificially created environmental conditions in a climate chamber at different cold environmental temperatures ranging from 10°C to −5°C with increments of 5°C, and different physical activities that simulate as closely as possible real life activities such as sitting and walking.

Findings

The results of the performed research work show that PCMs provide a small temporary thermal effect that is reflected in small increases or decreases in mean skin temperature during changes in activity. Furthermore, it was concluded that the small effect of PCMs in business clothing systems on the thermo-physiological comfort of the wearer in a cold environment, which is shown as a change of mean skin temperature when subjects walk on a treadmill and subsequently move to a sitting position, should not be ignored in a cold environment where low skin temperatures were measured.

Practical implications

The results of this study demonstrate that the physiological parameters of thermo-physiological comfort, in combination with subjective evaluation, provide valuable information for textile and clothing manufactures as well as scientists and engineers involved in the design and development of new products with thermal comfort as a quality criterion.

Originality/value

The investigation shows that different environmental conditions, activity levels and thermal properties of clothing systems have a considerable impact on the physiological parameters of the subjects and subjective assessment of thermal comfort in a cold environment, and that PCMs incorporated in business clothing systems provide a small temporary thermal effect that is reflected in small increases or decreases in mean skin temperature during changes in activity, such as when subjects walk on a treadmill and subsequently move to a sitting position.

Details

International Journal of Clothing Science and Technology, vol. 30 no. 1
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 16 March 2015

Congcong Zhou, Chunlong Tu, Jian Tian, Jingjie Feng, Yun Gao and Xuesong Ye

The purpose of this paper is to design a low-power human physiological parameters monitoring system which can monitor six vital parameters simultaneously based on wearable body…

Abstract

Purpose

The purpose of this paper is to design a low-power human physiological parameters monitoring system which can monitor six vital parameters simultaneously based on wearable body sensor network.

Design/methodology/approach

This paper presents a low-power multiple physiological parameters monitoring system (MPMS) which comprises four subsystems. These are: electrocardiogram (ECG)/respiration (RESP) parameters monitoring subsystem with embedded algorithms; blood oxygen (SpO2)/pulse rate (PR)/body temperature (BT)/blood pressure (BP) parameters monitoring subsystem with embedded algorithms; main control subsystem which is in charge of system-level power management, communication and interaction design; and upper computer software subsystem which manipulates system function and analyzes data.

Findings

Results have successfully demonstrated monitoring human ECG, RESP, PR, SpO2, BP and BT simultaneously using the MPMS device. In addition, the power reduction technique developed in this work at the physical/hardware level is effective. Reliability of algorithms developed for monitoring these parameters is assessed by Fluke Prosim8 Vital Signs Simulators (produced by Fluke Corp. USA).

Practical implications

The MPMS device provides long-term health monitoring without interference from normal personal activities, which potentially allows applications in real-time daily healthcare monitoring, chronic diseases monitoring, elderly monitoring, human emotions recognization and so on.

Originality/value

First, a power reduction technique at the physical/hardware level is designed to realize low power consumption. Second, the proposed MPMS device enables simultaneously monitoring six key parameters. Third, unlike most monitoring systems in bulk size, the proposed system is much smaller (118 × 58 × 18.5 mm3, 140 g total weight). In addition, a comfortable smart shirt is fabricated to accommodate the portable device, offering reliable measurements.

Details

Sensor Review, vol. 35 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 10 April 2019

Yan Hong, Xuechun Cao, Yan Chen, Zhijuan Pan, Yu Chen and Xianyi Zeng

The purpose of this paper is to investigate physiological indices related to comfort and health condition, based on which corresponding electronic equipment are selected and…

Abstract

Purpose

The purpose of this paper is to investigate physiological indices related to comfort and health condition, based on which corresponding electronic equipment are selected and applied. A wearable monitoring system using sensor and liquid crystal display (LCD) techniques are then designed. Sensors are used to collect and transmit recording required signals from the wearer. A microcomputer with the type of AT89C52 is used to record and analyze the collected data. LCD is applied to display the health and comfort condition of the wearer.

Design/methodology/approach

A novel wearable monitoring system for the measurement of physiological indices and clothing microclimate is proposed in this study in order to monitoring both health and comfort condition of the wearer.

Findings

The proposed system provides reference for the application of sensor and display technologies in the field of smart clothing, which can be further applied to infant and child care, health care, home entertainment, military and industry.

Originality/value

This paper, first, investigated a framework of a wearable monitoring system considering both comfort and health condition and summarized the related physiological indices. The requirements of both comfort and health condition monitoring are analyzed to select appropriate electronic elements.

Details

International Journal of Clothing Science and Technology, vol. 31 no. 3
Type: Research Article
ISSN: 0955-6222

Keywords

Open Access
Article
Publication date: 8 August 2022

Ying Li, Li Zhao, Kun Gao, Yisheng An and Jelena Andric

The purpose of this paper is to characterize distracted driving by quantifying the response time and response intensity to an emergency stop using the driver’s physiological

Abstract

Purpose

The purpose of this paper is to characterize distracted driving by quantifying the response time and response intensity to an emergency stop using the driver’s physiological states.

Design/methodology/approach

Field tests with 17 participants were conducted in the connected and automated vehicle test field. All participants were required to prioritize their primary driving tasks while a secondary nondriving task was asked to be executed. Demographic data, vehicle trajectory data and various physiological data were recorded through a biosignalsplux signal data acquisition toolkit, such as electrocardiograph for heart rate, electromyography for muscle strength, electrodermal activity for skin conductance and force-sensing resistor for braking pressure.

Findings

This study quantified the psychophysiological responses of the driver who returns to the primary driving task from the secondary nondriving task when an emergency occurs. The results provided a prototype analysis of the time required for making a decision in the context of advanced driver assistance systems or for rebuilding the situational awareness in future automated vehicles when a driver’s take-over maneuver is needed.

Originality/value

The hypothesis is that the secondary task will result in a higher mental workload and a prolonged reaction time. Therefore, the driver states in distracted driving are significantly different than in regular driving, the physiological signal improves measuring the brake response time and distraction levels and brake intensity can be expressed as functions of driver demographics. To the best of the authors’ knowledge, this is the first study using psychophysiological measures to quantify a driver’s response to an emergency stop during distracted driving.

Details

Journal of Intelligent and Connected Vehicles, vol. 5 no. 3
Type: Research Article
ISSN: 2399-9802

Keywords

Article
Publication date: 20 November 2007

George K. Stylios

Examines the thirteenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects…

1551

Abstract

Examines the thirteenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects discussed include cotton fabric processing, asbestos substitutes, textile adjuncts to cardiovascular surgery, wet textile processes, hand evaluation, nanotechnology, thermoplastic composites, robotic ironing, protective clothing (agricultural and industrial), ecological aspects of fibre properties – to name but a few! There would appear to be no limit to the future potential for textile applications.

Details

International Journal of Clothing Science and Technology, vol. 19 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 14 November 2008

George K. Stylios

Examines the fourteenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects…

1248

Abstract

Examines the fourteenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects discussed include cotton fabric processing, asbestos substitutes, textile adjuncts to cardiovascular surgery, wet textile processes, hand evaluation, nanotechnology, thermoplastic composites, robotic ironing, protective clothing (agricultural and industrial), ecological aspects of fibre properties – to name but a few! There would appear to be no limit to the future potential for textile applications.

Details

International Journal of Clothing Science and Technology, vol. 20 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 30 November 2020

Ammar Moohialdin, Fiona Lamari, Marc Miska and Bambang Trigunarsyah

Hot and humid climates (HHCs) are potential environmental hazards that directly affect construction workers' health and safety (HS) and negatively impact workers' productivity…

Abstract

Purpose

Hot and humid climates (HHCs) are potential environmental hazards that directly affect construction workers' health and safety (HS) and negatively impact workers' productivity. Extensive research efforts have addressed the effects of HHCs. However, these efforts have been inconsistent in their approach for selecting factors influencing workers in such conditions. There are also increasing concerns about the drop-off in research interest to follow through intrusive and non-real-time measurements. This review aims to identify the major research gaps in measurements applied in previous research with careful attention paid to the factors that influence the intrusiveness and selection of the applied data collection methods.

Design/methodology/approach

This research integrates a manual subjective discussion with a thematic analysis of Leximancer software and an elaborating chronological, geographical and methodological review that yielded 701 articles and 76 peer-reviewed most related articles.

Findings

The literature included the physiological parameters as influencing factors and useful indicators for HHC effects and identified site activity intensity as the most influencing work-related factor. In total, three main gaps were identified: (1) the role of substantial individual and work-related factors; (2) managerial interventions and the application of the right time against the right symptoms, sample size and measurement intervals and (3) applied methods of data collection; particularly, the intrusiveness of the utilised sensors.

Practical implications

The focus of researchers and practitioners should be in applying nonintrusive, innovative and real-time methods that can provide crew-level measurements. In particular, methods that can represent the actual effects of allocated tasks are aligned with real-time weather measurements, so proactive HHC-related preventions can be enforced on time.

Originality/value

This review contributes to the field of construction workers' safety in HHCs and enables researchers and practitioners to identify the most influential individual and work-related factors in HHCs. This review also proposes a framework for future research with suggestions to cover the highlighted research gaps and contributes to a critical research area in the construction industry.

Details

Engineering, Construction and Architectural Management, vol. 28 no. 9
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 13 November 2009

George K. Stylios

Examines the fifthteenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects…

1098

Abstract

Examines the fifthteenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects discussed include cotton fabric processing, asbestos substitutes, textile adjuncts to cardiovascular surgery, wet textile processes, hand evaluation, nanotechnology, thermoplastic composites, robotic ironing, protective clothing (agricultural and industrial), ecological aspects of fibre properties – to name but a few! There would appear to be no limit to the future potential for textile applications.

Details

International Journal of Clothing Science and Technology, vol. 21 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 1 November 2006

George K. Stylios

Examines the twelfth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects…

1097

Abstract

Examines the twelfth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects discussed include cotton fabric processing, asbestos substitutes, textile adjuncts to cardiovascular surgery, wet textile processes, hand evaluation, nanotechnology, thermoplastic composites, robotic ironing, protective clothing (agricultural and industrial), ecological aspects of fibre properties – to name but a few! There would appear to be no limit to the future potential for textile applications.

Details

International Journal of Clothing Science and Technology, vol. 18 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 3 October 2022

Mladen Stančić, Dragana Grujić, Nemanja Kašiković, Branka Ružičić and Djordje Vujčić

The research aims to examine the varying influence of printed inkjet ink on the warm/cool feeling and air permeability of printed textile materials and thus on the thermal…

Abstract

Purpose

The research aims to examine the varying influence of printed inkjet ink on the warm/cool feeling and air permeability of printed textile materials and thus on the thermal properties of printed garments.

Design/methodology/approach

The influence of different number of printing pass and different tone value (TV) coverage was examined. The tested samples were printed with water-based pigment inkjet inks with 10, 50 and 100% TVs with one, three and five printing passes. The tested samples were subjected to thermal characteristics testing by measuring the warm/cool feeling and air permeability before and after printing.

Findings

The research results showed that there is an increase in the value of the warm/cool feeling by increasing the amount of applied ink on the textile material, which occurs by increasing the TVs and the number of printing pass. At the same time values of air permeability decrease by increasing the number of printing pass, as well as by increasing TVs.

Originality/value

Based on the results, mathematical models of the dependence of the warm/cool feeling value of printed textile materials on the air permeability and parameters of digital inkjet printing were created. These models are important in clothing design because they show in advance the values of the warm/cool feeling of the clothes being designed and thus enable the design of clothes for different purposes with optimal esthetic and thermal properties.

Details

International Journal of Clothing Science and Technology, vol. 35 no. 1
Type: Research Article
ISSN: 0955-6222

Keywords

1 – 10 of over 3000