Search results

1 – 10 of 888
Article
Publication date: 2 May 2024

Gerasimos G. Rigatos

To provide high torques needed to move a robot’s links, electric actuators are followed by a transmission system with a high transmission rate. For instance, gear ratios of 100:1…

Abstract

Purpose

To provide high torques needed to move a robot’s links, electric actuators are followed by a transmission system with a high transmission rate. For instance, gear ratios of 100:1 are often used in the joints of a robotic manipulator. This results into an actuator with large mechanical impedance (also known as nonback-drivable actuator). This in turn generates high contact forces when collision of the robotic mechanism occur and can cause humans’ injury. Another disadvantage of electric actuators is that they can exhibit overheating when constant torques have to be provided. Comparing to electric actuators, pneumatic actuators have promising properties for robotic applications, due to their low weight, simple mechanical design, low cost and good power-to-weight ratio. Electropneumatically actuated robots usually have better friction properties. Moreover, because of low mechanical impedance, pneumatic robots can provide moderate interaction forces which is important for robotic surgery and rehabilitation tasks. Pneumatic actuators are also well suited for exoskeleton robots. Actuation in exoskeletons should have a fast and accurate response. While electric motors come against high mechanical impedance and the risk of causing injuries, pneumatic actuators exhibit forces and torques which stay within moderate variation ranges. Besides, unlike direct current electric motors, pneumatic actuators have an improved weight-to-power ratio and avoid overheating problems.

Design/methodology/approach

The aim of this paper is to analyze a nonlinear optimal control method for electropneumatically actuated robots. A two-link robotic exoskeleton with electropneumatic actuators is considered as a case study. The associated nonlinear and multivariable state-space model is formulated and its differential flatness properties are proven. The dynamic model of the electropneumatic robot is linearized at each sampling instance with the use of first-order Taylor series expansion and through the computation of the associated Jacobian matrices. Within each sampling period, the time-varying linearization point is defined by the present value of the robot’s state vector and by the last sampled value of the control inputs vector. An H-infinity controller is designed for the linearized model of the robot aiming at solving the related optimal control problem under model uncertainties and external perturbations. An algebraic Riccati equation is solved at each time-step of the control method to obtain the stabilizing feedback gains of the H-infinity controller. Through Lyapunov stability analysis, it is proven that the robot’s control scheme satisfies the H-infinity tracking performance conditions which indicate the robustness properties of the control method. Moreover, global asymptotic stability is proven for the control loop. The method achieves fast convergence of the robot’s state variables to the associated reference trajectories, and despite strong nonlinearities in the robot’s dynamics, it keeps moderate the variations of the control inputs.

Findings

In this paper, a novel solution has been proposed for the nonlinear optimal control problem of robotic exoskeletons with electropneumatic actuators. As a case study, the dynamic model of a two-link lower-limb robotic exoskeleton with electropneumatic actuators has been considered. The dynamic model of this robotic system undergoes first approximate linearization at each iteration of the control algorithm around a temporary operating point. Within each sampling period, this linearization point is defined by the present value of the robot’s state vector and by the last sampled value of the control inputs vector. The linearization process relies on first-order Taylor series expansion and on the computation of the associated Jacobian matrices. The modeling error which is due to the truncation of higher-order terms from the Taylor series is considered to be a perturbation which is asymptotically compensated by the robustness of the control algorithm. To stabilize the dynamics of the electropneumatically actuated robot and to achieve precise tracking of reference setpoints, an H-infinity (optimal) feedback controller is designed. Actually, the proposed H-infinity controller for the model of the two-link electropneumatically actuated exoskeleton achieves the solution of the associated optimal control problem under model uncertainty and external disturbances. This controller implements a min-max differential game taking place between: (i) the control inputs which try to minimize a cost function which comprises a quadratic term of the state vector’s tracking error and (ii) the model uncertainty and perturbation inputs which try to maximize this cost function. To select the stabilizing feedback gains of this H-infinity controller, an algebraic Riccati equation is being repetitively solved at each time-step of the control method. The global stability properties of the H-infinity control scheme are proven through Lyapunov analysis.

Research limitations/implications

Pneumatic actuators are characterized by high nonlinearities which are due to air compressibility, thermodynamics and valves behavior and thus pneumatic robots require elaborated nonlinear control schemes to ensure their fast and precise positioning. Among the control methods which have been applied to pneumatic robots, one can distinguish differential geometric approaches (Lie algebra-based control, differential flatness theory-based control, nonlinear model predictive control [NMPC], sliding-mode control, backstepping control and multiple models-based fuzzy control). Treating nonlinearities and fault tolerance issues in the control problem of robotic manipulators with electropneumatic actuators has been a nontrivial task.

Practical implications

The novelty of the proposed control method is outlined as follows: preceding results on the use of H-infinity control to nonlinear dynamical systems were limited to the case of affine-in-the-input systems with drift-only dynamics. These results considered that the control inputs gain matrix is not dependent on the values of the system’s state vector. Moreover, in these approaches the linearization was performed around points of the desirable trajectory, whereas in the present paper’s control method the linearization points are related with the value of the state vector at each sampling instance as well as with the last sampled value of the control inputs vector. The Riccati equation which has been proposed for computing the feedback gains of the controller is novel, so is the presented global stability proof through Lyapunov analysis. This paper’s scientific contribution is summarized as follows: (i) the presented nonlinear optimal control method has improved or equally satisfactory performance when compared against other nonlinear control schemes that one can consider for the dynamic model of robots with electropneumatic actuators (such as Lie algebra-based control, differential flatness theory-based control, nonlinear model-based predictive control, sliding-mode control and backstepping control), (ii) it achieves fast and accurate tracking of all reference setpoints, (iii) despite strong nonlinearities in the dynamic model of the robot, it keeps moderate the variations of the control inputs and (iv) unlike the aforementioned alternative control approaches, this paper’s method is the only one that achieves solution of the optimal control problem for electropneumatic robots.

Social implications

The use of electropneumatic actuation in robots exhibits certain advantages. These can be the improved weight-to-power ratio, the lower mechanical impedance and the avoidance of overheating. At the same time, precise positioning and accurate execution of tasks by electropneumatic robots requires the application of elaborated nonlinear control methods. In this paper, a new nonlinear optimal control method has been developed for electropneumatically actuated robots and has been specifically applied to the dynamic model of a two-link robotic exoskeleton. The benefit from using this paper’s results in industrial and biomedical applications is apparent.

Originality/value

A comparison of the proposed nonlinear optimal (H-infinity) control method against other linear and nonlinear control schemes for electropneumatically actuated robots shows the following: (1) Unlike global linearization-based control approaches, such as Lie algebra-based control and differential flatness theory-based control, the optimal control approach does not rely on complicated transformations (diffeomorphisms) of the system’s state variables. Besides, the computed control inputs are applied directly on the initial nonlinear model of the electropneumatic robot and not on its linearized equivalent. The inverse transformations which are met in global linearization-based control are avoided and consequently one does not come against the related singularity problems. (2) Unlike model predictive control (MPC) and NMPC, the proposed control method is of proven global stability. It is known that MPC is a linear control approach that if applied to the nonlinear dynamics of the electropneumatic robot, the stability of the control loop will be lost. Besides, in NMPC the convergence of its iterative search for an optimum depends on initialization and parameter values selection and consequently the global stability of this control method cannot be always assured. (3) Unlike sliding-mode control and backstepping control, the proposed optimal control method does not require the state-space description of the system to be found in a specific form. About sliding-mode control, it is known that when the controlled system is not found in the input-output linearized form the definition of the sliding surface can be an intuitive procedure. About backstepping control, it is known that it cannot be directly applied to a dynamical system if the related state-space model is not found in the triangular (backstepping integral) form. (4) Unlike PID control, the proposed nonlinear optimal control method is of proven global stability, the selection of the controller’s parameters does not rely on a heuristic tuning procedure, and the stability of the control loop is assured in the case of changes of operating points. (5) Unlike multiple local models-based control, the nonlinear optimal control method uses only one linearization point and needs the solution of only one Riccati equation so as to compute the stabilizing feedback gains of the controller. Consequently, in terms of computation load the proposed control method for the electropneumatic actuator’s dynamics is much more efficient.

Details

Robotic Intelligence and Automation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 5 January 2024

Wenhao Zhou, Hailin Li, Hufeng Li, Liping Zhang and Weibin Lin

Given the regional heterogeneity of economic development, electricity consumption in various regions exhibits a discrepant growth pattern. The purpose of this study is to…

Abstract

Purpose

Given the regional heterogeneity of economic development, electricity consumption in various regions exhibits a discrepant growth pattern. The purpose of this study is to construct a grey system forecasting model with intelligent parameters for predicting provincial electricity consumption in China.

Design/methodology/approach

First, parameter optimization and structural expansion are simultaneously integrated into a unified grey system prediction framework, enhancing its adaptive capabilities. Second, by setting the minimum simulation percentage error as the optimization goal, the authors apply the particle swarm optimization (PSO) algorithm to search for the optimal grey generation order and background value coefficient. Third, to assess the performance across diverse power consumption systems, the authors use two electricity consumption cases and select eight other benchmark models to analyze the simulation and prediction errors. Further, the authors conduct simulations and trend predictions using data from all 31 provinces in China, analyzing and predicting the development trends in electricity consumption for each province from 2021 to 2026.

Findings

The study identifies significant heterogeneity in the development trends of electricity consumption systems among diverse provinces in China. The grey prediction model, optimized with multiple intelligent parameters, demonstrates superior adaptability and dynamic adjustment capabilities compared to traditional fixed-parameter models. Outperforming benchmark models across various evaluation indicators such as root mean square error (RMSE), average percentage error and Theil’s index, the new model establishes its robustness in predicting electricity system behavior.

Originality/value

Acknowledging the limitations of traditional grey prediction models in capturing diverse growth patterns under fixed-generation orders, single structures and unadjustable background values, this study proposes a fractional grey intelligent prediction model with multiple parameter optimization. By incorporating multiple parameter optimizations and structure expansion, it substantiates the model’s superiority in forecasting provincial electricity consumption.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 9 April 2024

Selma Bahi and Mohamed Nabil Houhou

This study aims to investigate the behavior of different types of stone columns, including the short and floating columns, as well as the ordinary and the geosynthetic encased…

Abstract

Purpose

This study aims to investigate the behavior of different types of stone columns, including the short and floating columns, as well as the ordinary and the geosynthetic encased stone columns (OSC and GESC). The effectiveness of the geosynthetic encasement and the impact of the installation using the lateral expansion method on the column performance is evaluated through a three-dimensional (3D) unit cell numerical analysis.

Design/methodology/approach

A full 3D numerical analysis is carried out using the explicit finite element code PLAXIS 3D to examine the installation influence on settlement reduction (ß), lateral displacement (Ux) and vertical displacement (Uz) relative to different values of lateral expansion of the column (0% to 15%).

Findings

The findings demonstrate the superior performance of GESC, particularly short columns outperforming floating counterparts. This enhanced performance is attributed to the combined effects of geosynthetic encasement and increased lateral expansion. Notably, these strategies contribute significantly to decreasing lateral displacement (Ux) at the column’s edge and reducing vertical displacement (Uz) under the rigid footing.

Originality/value

In contrast to previous studies that examined the installation effect of OSC contexts, this paper presents a comprehensive investigation into the effect of geosynthetic encasement and the installation effects using the lateral expansion method in very soft soil, using 3D numerical simulation. The study emphasizes the significance of the consideration of geosynthetic encasement and lateral expansion of the column during the design process to enhance column performance.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 9 February 2023

Sajeda Al-Hadidi, Ghaleb Sweis, Waleed Abu-Khader, Ghaida Abu-Rumman and Rateb Sweis

Despite the enormous need to succeed in the urban model, scientists and policymakers should work consistently to create blueprints to regulate urbanization. The absence of…

Abstract

Purpose

Despite the enormous need to succeed in the urban model, scientists and policymakers should work consistently to create blueprints to regulate urbanization. The absence of coordination between the crucial requirements and the regional strategies of the local authorities leads to a lack of conformance in urban development. The purpose of this paper is to address this issue.

Design/methodology/approach

This study intends to manage future urban growth patterns using integrated methods and then employ the results in the genetic algorithm (GA) model to considerably improve growth behavior. Multi-temporal land-use datasets have been derived from remotely sensed images for the years 1990, 2000, 2010 and 2020. Urban growth patterns and processes were then analyzed with land-use-and-land-cover dynamics. Results were examined for simulation and utilization of the GA.

Findings

Model parameters were derived and evaluated, and a preliminary assessment of the effective coefficient in the formation of urbanization is analyzed, showing the city's urbanization pattern has followed along with the transportation infrastructure and outward growth, and the scattering rates are high, with an increase of 5.64% in building area associated with a decrease in agricultural lands and rangelands.

Originality/value

The research achieved a considerable improvement over the growth behavior. The conducted research design was the first of its type in that field to be executed to any specific growth pattern parameters in terms of regulating and policymaking. The method has integrated various artificial intelligence models to monitor, measure and optimize the projected growth by applying this design. Other research on the area was limited to projecting the future of Amman as it is an urbanized distressed city.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 22 March 2024

Mohammad Dehghan Afifi, Bahram Jalili, Amirmohammad Mirzaei, Payam Jalili and Davood Ganji

This study aims to analyze the two-dimensional ferrofluid flow in porous media. The effects of changes in parameters such as permeability parameter, buoyancy parameter, Reynolds…

Abstract

Purpose

This study aims to analyze the two-dimensional ferrofluid flow in porous media. The effects of changes in parameters such as permeability parameter, buoyancy parameter, Reynolds and Prandtl numbers, radiation parameter, velocity slip parameter, energy dissipation parameter and viscosity parameter on the velocity and temperature profile are displayed numerically and graphically.

Design/methodology/approach

By using simplification, nonlinear differential equations are converted into ordinary nonlinear equations. Modeling is done in the Cartesian coordinate system. The finite element method (FEM) and the Akbari-Ganji method (AGM) are used to solve the present problem. The finite element model determines each parameter’s effect on the fluid’s velocity and temperature.

Findings

The results show that if the viscosity parameter increases, the temperature of the fluid increases, but the velocity of the fluid decreases. As can be seen in the figures, by increasing the permeability parameter, a reduction in velocity and an enhancement in fluid temperature are observed. When the Reynolds number increases, an increase in fluid velocity and temperature is observed. If the speed slip parameter increases, the speed decreases, and as the energy dissipation parameter increases, the temperature also increases.

Originality/value

When considering factors like thermal conductivity and variable viscosity in this context, they can significantly impact velocity slippage conditions. The primary objective of the present study is to assess the influence of thermal conductivity parameters and variable viscosity within a porous medium on ferrofluid behavior. This particular flow configuration is chosen due to the essential role of ferrofluids and their extensive use in engineering, industry and medicine.

Article
Publication date: 26 March 2024

Rawan Ramadan, Hassan Ghanem, Jamal M. Khatib and Adel M. ElKordi

The purpose of this paper is to check the feasibility of using biomaterial such as of Phragmites-Australis (PA) in cement paste to achieve sustainable building materials.

Abstract

Purpose

The purpose of this paper is to check the feasibility of using biomaterial such as of Phragmites-Australis (PA) in cement paste to achieve sustainable building materials.

Design/methodology/approach

In this study, cement pastes were prepared by adding locally produced PA fibers in four different volumes: 0%, 0.5%, 1% and 2% for a duration of 180 days. Bottles and prisms were subjected to chemical shrinkage (CS), drying shrinkage (DS), autogenous shrinkage (AS) and expansion tests. Besides, prism specimens were tested for flexural strength and compressive strength. Furthermore, a mathematical model was proposed to determine the variation length change as function of time.

Findings

The experimental findings showed that the mechanical properties of cement paste were significantly improved by the addition of 1% PA fiber compared to other PA mixes. The effect of increasing the % of PA fibers reduces the CS, AS, DS and expansion of cement paste. For example, the addition of 2% PA fibers reduces the CS, expansion, AS and DS at 180 days by 36%, 20%, 13% and 10%, respectively compared to the control mix. The proposed nonlinear model fit to the experimental data is appropriate with R2 values above 0.92. There seems to be a strong positive linear correlation between CS and AS/DS with R2 above 0.95. However, there exists a negative linear correlation between CS and expansion.

Research limitations/implications

The PA used in this study was obtained from one specific location. This can exhibit a limitation as soil type may affect PA properties. Also, one method was used to treat the PA fibers.

Practical implications

The utilization of PA fibers in paste may well reduce the formation of cracks and limit its propagation, thus using a biomaterial such as PA in cementitious systems can be an environmentally friendly option as it will make good use of the waste generated and enhance local employment, thereby contributing toward sustainable development.

Originality/value

To the authors best knowledge, there is hardly any research on the effect of PA on the volume stability of cement paste. Therefore, the research outputs are considered to be original.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 29 November 2022

Menggen Chen and Yuanren Zhou

The purpose of this paper is to explore the dynamic interdependence structure and risk spillover effect between the Chinese stock market and the US stock market.

Abstract

Purpose

The purpose of this paper is to explore the dynamic interdependence structure and risk spillover effect between the Chinese stock market and the US stock market.

Design/methodology/approach

This paper mainly uses the multivariate R-vine copula-complex network analysis and the multivariate R-vine copula-CoVaR model and selects stock price indices and their subsector indices as samples.

Findings

The empirical results indicate that the Energy, Materials and Financials sectors have leading roles in the interdependent structure of the Chinese and US stock markets, while the Utilities and Real Estate sectors have the least important positions. The comprehensive influence of the Chinese stock market is similar to that of the US stock market but with smaller differences in the influence of different sectors of the US stock market on the overall interdependent structure system. Over time, the interdependent structure of both stock markets changed; the sector status gradually equalized; the contribution of the same sector in different countries to the interdependent structure converged; and the degree of interaction between the two stock markets was positively correlated with the degree of market volatility.

Originality/value

This paper employs the methods of nonlinear cointegration and the R-vine copula function to explore the interactive relationship and risk spillover effect between the Chinese stock market and the US stock market. This paper proposes the R-vine copula-complex network analysis method to creatively construct the interdependent network structure of the two stock markets. This paper combines the generalized CoVaR method with the R-vine copula function, introduces the stock market decline and rise risk and further discusses the risk spillover effect between the two stock markets.

Details

International Journal of Emerging Markets, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1746-8809

Keywords

Article
Publication date: 12 January 2024

Hasanuzzaman, Kaustov Chakraborty and Surajit Bag

Sustainability is a major challenge for India’s (Bharat’s) coal mining industry. The government has prioritized sustainable growth in the coal mining industry. It is putting forth…

Abstract

Purpose

Sustainability is a major challenge for India’s (Bharat’s) coal mining industry. The government has prioritized sustainable growth in the coal mining industry. It is putting forth multifaceted economic, environmental and social efforts to accomplish the Sustainable Development Goals (SDGs). This research aims to identify the factors for sustainable improvements in coal mining operations. Secondly, this study examines the intensity of causal relations among the factors. Thirdly, this study examines whether causal relations exist among the factors to be considered for sustainable improvement in coal mining operations. Lastly, the study aims to understand how the factors ensure sustainable improvement in coal mining operations.

Design/methodology/approach

An integrated three-phase methodology was applied to identify the critical factors related to coal mining and explore the contextual relationships among the identified factors. Fifteen critical factors were selected based on the Delphi technique. Subsequently, the fifteen factors were analyzed to determine the contextual and causal relationships using the total interpretive structural modelling (TISM) and DEMATEL methods.

Findings

The study identified “Extraction of Coal and Overburden” as the leading factor for sustainable improvement in coal mining operations, because it directly or indirectly influences the overall mining operation, environmental impact and resource utilization. Hence, strict control measures are necessary in “Extraction of Coal and Overburden” to ensure sustainable coal mining. Conversely, “Health Impact” is the lagging factor as it has very low or no impact on the system. Therefore, it requires fewer control mechanisms. Nevertheless, control measures for the remaining factors must be decided on a priority basis.

Practical implications

The proposed structural model can serve as a framework for enhancing sustainability in India’s (Bharat’s) coal mining operations. This framework can also be applied to other developing nations with similar sustainability concerns, providing valuable guidance for sustainable operations.

Originality/value

The current study highlights the significance of logical links and dependencies between several parameters essential to coal mining sustainability. Furthermore, it leads to the development of a well-defined control sequence that identifies the causal linkages between numerous components needed to achieve real progress towards sustainability.

Details

Benchmarking: An International Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1463-5771

Keywords

Article
Publication date: 20 February 2024

Abebe Hambe Talema and Wubshet Berhanu Nigusie

The purpose of this study is to analyze the horizontal expansion of Burayu Town between 1990 and 2020. The study typically acts as a baseline for integrated spatial planning in…

Abstract

Purpose

The purpose of this study is to analyze the horizontal expansion of Burayu Town between 1990 and 2020. The study typically acts as a baseline for integrated spatial planning in small- and medium-sized towns, which will help to plan sustainable utilization of land.

Design/methodology/approach

Landsat5-TM, Landsat7 ETM+, Landsat5 TM and Landsat8 OLI were used in the study, along with other auxiliary data. The LULC map classifications were generated using the Random Forest Package from the Comprehensive R Archive Network. Post-classification, spatial metrics, and per capita land consumption rate were used to understand the manner and rate of expansion of Burayu Town. Focus group discussions and key informant interviews were also used to validate land use classes through triangulation.

Findings

The study found that the built-up area was the most dynamic LULC category (85.1%) as it increased by over 4,000 ha between 1990 and 2020. Furthermore, population increase did not result in density increase as per capita land consumption increased from 0.024 to 0.040 during the same period.

Research limitations/implications

As a result of financial limitations, there were no high-resolution satellite images available, making it challenging to pinpoint the truth as it is on the ground. Including senior citizens in the study region allowed this study to overcome these restrictions and detect every type of land use and cover.

Practical implications

Data on urban growth are useful for planning land uses, estimating growth rates and advising the government on how best to use land. This can be achieved by monitoring and reviewing development plans using satellite imaging data and GIS tools.

Originality/value

The use of Random Forest for image classification and the employment of local knowledge to validate the accuracy of land cover classification is a novel approach to properly customize remote sensing applications.

Details

Management of Environmental Quality: An International Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1477-7835

Keywords

Article
Publication date: 7 May 2024

Job Maveke Wambua, Fredrick Madaraka Mwema, Stephen Akinlabi, Martin Birkett, Ben Xu, Wai Lok Woo, Mike Taverne, Ying-Lung Daniel Ho and Esther Akinlabi

The purpose of this paper is to present an optimisation of four-point star-shaped structures produced through additive manufacturing (AM) polylactic acid (PLA). The study also…

Abstract

Purpose

The purpose of this paper is to present an optimisation of four-point star-shaped structures produced through additive manufacturing (AM) polylactic acid (PLA). The study also aims to investigate the compression failure mechanism of the structure.

Design/methodology/approach

A Taguchi L9 orthogonal array design of the experiment is adopted in which the input parameters are resolution (0.06, 0.15 and 0.30 mm), print speed (60, 70 and 80 mm/s) and bed temperature (55°C, 60°C, 65°C). The response parameters considered were printing time, material usage, compression yield strength, compression modulus and dimensional stability. Empirical observations during compression tests were used to evaluate the load–response mechanism of the structures.

Findings

The printing resolution is the most significant input parameter. Material length is not influenced by the printing speed and bed temperature. The compression stress–strain curve exhibits elastic, plateau and densification regions. All the samples exhibit negative Poisson’s ratio values within the elastic and plateau regions. At the beginning of densification, the Poisson’s ratios change to positive values. The metamaterial printed at a resolution of 0.3 mm, 80 mm/s and 60°C exhibits the best mechanical properties (yield strength and modulus of 2.02 and 58.87 MPa, respectively). The failure of the structure occurs through bending and torsion of the unit cells.

Practical implications

The optimisation study is significant for decision-making during the 3D printing and the empirical failure model shall complement the existing techniques for the mechanical analysis of the metamaterials.

Originality/value

To the best of the authors’ knowledge, for the first time, a new empirical model, based on the uniaxial load response and “static truss concept”, for failure mechanisms of the unit cell is presented.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of 888