Search results

1 – 10 of over 3000
Article
Publication date: 1 April 2014

Jean Batina, Serge Blancher and Tarik Kouskou

Mathematical and numerical models are developed to study the melting of a Phase Change Material (PCM) inside a 2D cavity. The bottom of the cell is heated at constant and uniform…

Abstract

Purpose

Mathematical and numerical models are developed to study the melting of a Phase Change Material (PCM) inside a 2D cavity. The bottom of the cell is heated at constant and uniform temperature or heat flux, assuming that the rest of the cavity is completely adiabatic. The paper used suitable numerical methods to follow the interface temporal evolution with a good accuracy. The purpose of this paper is to show how the evolution of the latent energy absorbed to melt the PCM depends on the temperature imposed on the lower wall of the cavity.

Design/methodology/approach

The problem is written with non-homogeneous boundary conditions. Momentum and energy equations are numerically solved in space by a spectral collocation method especially oriented to this situation. A Crank-Nicolson scheme permits the resolution in time.

Findings

The results clearly show the evolution of multicellular regime during the process of fusion and the kinetics of phase change depends on the boundary condition imposed on the bottom cell wall. Thus the charge and discharge processes in energy storage cells can be controlled by varying the temperature in the cell PCM. Substantial modifications of the thermal convective heat and mass transfer are highlighted during the transient regime. This model is particularly suitable to follow with a good accuracy the evolution of the solid/liquid interface in the process of storage/release energy.

Research limitations/implications

The time-dependent physical properties that induce non-linear coupled unsteady terms in Navier-Stokes and energy equations are not taken into account in the present model. The present model is actually extended to these coupled situations. This problem requires smoother geometries. One can try to palliate this disadvantage by constructing smoother approximations of non-smooth geometries. The augmentation of polynomials developments orders increases strongly the computing time. When the external heat flux or temperature imposed at the PCM is much greater than the temperature of the PCM fusion, one must choose carefully some data to assume the algorithms convergence.

Practical implications

Among the areas where this work can be used, are: buildings where the PCM are used in insulation and passive cooling; thermal energy storage, the PCM stores energy by changing phase, solid to liquid (fusion); cooling and transport of foodstuffs or pharmaceutical or medical sensitive products, the PCM is used in the food industry, pharmaceutical and medical, to minimize temperature variations of food, drug or sensitive materials; and the textile industry, PCM materials in the textile industry are used in microcapsules placed inside textile fibres. The PCM intervene to regulate heat transfer between the body and the outside.

Originality/value

The paper's originality is reflected in the precision of its results, due to the use of a high-accuracy numerical approximation based on collocation spectral methods, and the choice of Chebyshev polynomials basis in both axial and radial directions.

Article
Publication date: 1 January 2013

Omar Hegazy, Joeri Van Mierlo, Ricardo Barrero, Noshin Omar and Philippe Lataire

The purpose of this paper is to optimize the design and power management control fuel cell/supercapacitor and fuel cell/battery hybrid electric vehicles and to provide a…

Abstract

Purpose

The purpose of this paper is to optimize the design and power management control fuel cell/supercapacitor and fuel cell/battery hybrid electric vehicles and to provide a comparative study between the two configurations.

Design/methodology/approach

In hybrid electric vehicles (HEVs), the power flow control and the powertrain component sizing are strongly related and their design will significantly influence the vehicle performance, cost, efficiency and fuel economy. Hence, it is necessary to assess the power flow management strategy at the powertrain design stage in order to minimize component sizing, cost, and the vehicle fuel consumption for a given driving cycle. In this paper, the PSO algorithm is implemented to optimize the design and the power management control of fuel cell/supercapacitor (FC/SC) and fuel cell/battery (FC/B) HEVs for a given driving cycle. The powertrain and the proposed control strategy are designed and simulated by using MATLAB/Simulink. In addition, a comparative study of fuel cell/supercapacitor and fuel cell/battery HEVs is analyzed and investigated for adequately selecting of the appropriate HEV, which could be used in industrial applications.

Findings

The results have demonstrated that it is possible to significantly improve the hydrogen consumption in fuel cell hybrid electric vehicles (FCHEVs) by applying the PSO approach. Furthermore, by analyzing and comparing the results, the FC/SC HEV has slightly higher fuel economy than the FC/B HEV.

Originality/value

The addition of electrical energy storage such as supercapacitor or battery in fuel cell‐based vehicles has a great potential and a promising approach for future hybrid electric vehicles (HEV). This paper is mainly focused on the optimal design and power management control, which has significant influences on the vehicle performance. Therefore, this study presents a modified control strategy based on PSO algorithm (CSPSO) for optimizing the power sharing between sources and reducing the components sizing. Furthermore, an interleaved multiple‐input power converter (IMIPC) is proposed for fuel cell hybrid electric vehicle to reduce the input current/output voltage ripples and to reduce the size of the passive components with high efficiency compared to conventional boost converter. Meanwhile, the fuel economy is improved. Moreover, a comparative study of FC/SC and FC/B HEVs will be provided to investigate the benefits of hybridization with energy storage system (ESS).

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 32 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 26 January 2010

Daren Yu and Xiaowu Lv

In recent years, high‐altitude/long‐endurance airship platforms have generated great interest as a means to provide communications and surveillance capabilities. The purpose of…

1121

Abstract

Purpose

In recent years, high‐altitude/long‐endurance airship platforms have generated great interest as a means to provide communications and surveillance capabilities. The purpose of this paper is to develop a model for airship conceptual design and help provide insight into the viability of high‐altitude/long‐endurance airships.

Design/methodology/approach

A configuration analysis model with the consideration of pressure difference, temperature difference, and helium purity, etc. was developed. The influences of the airship payload, size and area required of solar cell with environment and operation parameters, such as operation latitude, pressure difference, temperature difference, helium purity, seasons, latitude, and wind speed, etc. were analyzed.

Findings

The results show that the area of solar cell required for stratospheric airship is very large under the condition of low altitude, high latitude, wind, and in winter, etc. which might make the design of high‐altitude/long‐endurance airship an elusive goal. They also show that the solar cell efficiency is the key technology in the control of solar cell area required for airships, and the technology advances in regenerative fuel cells and propeller efficiency have significant effects among on the airship payload, size, and solar cell area required for airship.

Originality/value

The paper analyses the energy balance of the high‐altitude/long‐endurance airship.

Details

Aircraft Engineering and Aerospace Technology, vol. 82 no. 1
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 14 October 2009

Georgina Harell and Tugrul U. Daim

In order to compliment the growing use of renewable energies in the US, additional technologies must be employed on the bulk power system. This paper aims to forecast the most

2725

Abstract

Purpose

In order to compliment the growing use of renewable energies in the US, additional technologies must be employed on the bulk power system. This paper aims to forecast the most probable energy storage technologies.

Design/methodology/approach

The methodology was deployed in two steps: evaluate the potential energy storage technologies that could complement a wind turbine or photovoltaic system; and forecast which of these technologies is best poised to become a viable solution to the energy storage problem facing these renewable technologies.

Findings

Based on the publication and patent data, compressed air energy is set to be the fastest growing complimentary technology to wind energy. Two of these types of plants are currently in existence today as mentioned previously indicating the technology is commercially available. This technology has great potential; however, implementing this technology involves finding or creating underground airtight caverns in usable locations.

Research limitations/implications

The number of variables have been limited due to the methodologies chosen for this analysis. The research can be expanded using other criteria such as cost, cost of capital, economies of scale, environmental concerns, social and political constraints.

Originality/value

This paper provides an assessment that was indicated as necessary by those who identified the need for the development of energy storage technologies for future electricity generation.

Details

Foresight, vol. 11 no. 6
Type: Research Article
ISSN: 1463-6689

Keywords

Article
Publication date: 4 May 2012

Kah‐Yoong Chan, Hee‐Joe Phoon, Chee‐Pun Ooi, Wai‐Leong Pang and Sew‐Kin Wong

Power management of a wireless sensor node is important and needs to be designed efficiently without wasting excessive energy. The purpose of this paper is to report on the…

2751

Abstract

Purpose

Power management of a wireless sensor node is important and needs to be designed efficiently without wasting excessive energy. The purpose of this paper is to report on the improvement of the power management of a wireless sensor node.

Design/methodology/approach

The design involves the implementation of solar recharging technology with single‐ended primary inductance converter (SEPIC) on a wireless sensor node in order to achieve the improvement in power management.

Findings

The combination of the solar recharging technology with SEPIC converter shows promising results for efficiently supplying the power to the wireless sensor node.

Research limitations/implications

The design idea can be extended for many other electronic sensor applications, which can help to ensure an efficient power management of the sensor nodes.

Originality/value

The proposed design model demonstrates a new idea towards reduction of energy usage for wireless sensor nodes.

Article
Publication date: 15 June 2021

Deniz Zargari Afshar and Payam Alemi

At first, the organic/inorganic and hybrid PV materials by their electrical model are described. Then the proposed converter topology, circuit analysis and various operating modes…

Abstract

Purpose

At first, the organic/inorganic and hybrid PV materials by their electrical model are described. Then the proposed converter topology, circuit analysis and various operating modes of converter according to on/off timing of switches are investigated. The current and voltage in the converter components are illustrated and the voltage gain and switching stress of proposed converter are presented. Finally, to show the effectiveness of the proposed converter, the power loss analysis is provided and the simulation is done in PSIM software. In the last section, the advantages of the proposed topology of higher efficiency by lower number of components in compare with other conventional topologies are presented.

Design/methodology/approach

In this paper, an improved topology of DC-DC converter based on VL technique is proposed for Perovskite Solar cells (PeSCs). The PeSCs attracted a lot of interest due to their potential in combining the advantages of both organic and inorganic components. The proposed converter by using fewer components and higher output voltage generation in compare with conventional ones could be a good candidate for PeSCs due to lower efficiency of this cells. The performance of converter is expressed in continuous conduction mode (CCM) and discontinuous conduction mode (DCM), and the boundary conditions for the proposed converter is presented.

Findings

By using VL technique, this converter is used to boost the lower output voltage levels of PeSCs for grid connection. The PV cell output voltage is increased from 24.5 V to 106 V by proposed converter topology. The step-by-step voltage increasing by charging and discharging of inductor and capacitor is used for boosting the input voltage. By comparing other converters, there is no design complexity in the proposed converter structure, and the power loss is much reduced which increases the converter efficiency. On the other hand, due to using lower number of elements of energy storage elements such as inductors and capacitors, the converter cost is also diminished. Therefore, the design topology simplicity which result simple control algorithm and lower number of components which diminish the system cost by appropriate voltage boosting capability are the main advantages of this proposed topology for new PeSCs which don’t have enough efficiency in compare with old Si PV cells.

Originality/value

In this paper, by using the lower number of components a new structure of DC-DC converter based on the VL technique is proposed. The advantages of this converter such as the simplicity, easier control and high voltage gain by lower power loss, could make this converter a good candidate for new PeSCs where the system whole efficiency will be a critical point to have the unique properties of this new materials in lower loss.

Details

Circuit World, vol. 48 no. 2
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 2 May 2008

Steven Dubowsky, Samuel Kesner, Jean‐Sébastien Plante and Penelope Boston

This paper seeks to present recent work demonstrating the feasibility of Microbots' mobility in rough terrain. Microbots are a new search and rescue concept based on the…

1264

Abstract

Purpose

This paper seeks to present recent work demonstrating the feasibility of Microbots' mobility in rough terrain. Microbots are a new search and rescue concept based on the deployment of teams of small spherical mobile robots. In this concept, hundreds to thousands of cm‐scale, sub‐kilogram Microbots are released over a search site such as collapsed building rubble or caves. Microbots use hopping, bouncing, and rolling to infiltrate subterranean spaces in search of possible survivors.

Design/methodology/approach

The feasibility of the Microbot mobility concept is evaluated through laboratory prototypes and mobility simulations.

Findings

Experimental studies have demonstrated the feasibility of using dielectric elastomer actuators (DEAs) to generate autonomous hops. High‐efficiency hydrogen fuel cells were shown to be able to power DEAs. Simulation results show that Microbots of proper diameter and hop height can successfully traverse very rough terrains.

Research limitations/implications

The implication of this research is that small hopping robots are appropriate for certain search and rescue missions. The limitation of the research to date is that issues of control, path planning, and communication have not yet been addressed.

Practical implications

Key technologies of the Microbot mobility, that use high‐energy‐density micro fuel cells combined with low cost and lightweight DEAs, are feasible. These technologies have the potential to make a significant impact on the search and rescue robots.

Originality/value

These results suggest that a team of Microbots‐based DEAs and micro fuel cells can be a useful and effective tool for search and rescue operations.

Details

Industrial Robot: An International Journal, vol. 35 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Case study
Publication date: 13 March 2024

Tasneem Ahmad and Vinita Krishna

The case is based on the data collected from various secondary sources only.

Abstract

Research methodology

The case is based on the data collected from various secondary sources only.

Case overview/synopsis

Godi India, a lithium-ion cell manufacturing company in India, was working to design e-cell for electric vehicles (EV) which would be compatible with Indian conditions and reduce the cost of battery to the extent possible because e-cell contributes half of the electric vehicle’s price. Godi India was set up in January 2020 by Mahesh Godi. Looking for opportunities in India after having worked in the USA for 17 years, Mahesh found that even with the rise in EV the lithium-ion cell manufacturing in India was almost zero. Using innovation as its main strategy, the start-up started its operation with a team of 30 scientists. The start-up already registered 25 patents under its name with few awaiting. Most of the EV companies relied on Chinese lithium-ion cell. Local lithium-ion cell manufacturing was believed to be the key for EV industry growth in a country. Central government production linked schemes worth INR 18,100 crore were signed by major players like Ola electric, Reliance new energy and Rajesh exports to develop locally manufactured advance cells. The push from the government for locally manufacturing the cells was a major trigger for the rise in the EV industry. The case provides the analysis of the strategies applied by the company to grow in the lithium-ion cell manufacturing industry.

Complexity academic level

This case can be used in strategic management, entrepreneurship and general management courses/modules at the Undergraduate and Postgraduate level.

Details

The CASE Journal, vol. ahead-of-print no. ahead-of-print
Type: Case Study
ISSN: 1544-9106

Keywords

Article
Publication date: 23 November 2020

Nirmalendu Biswas, Aparesh Datta, Nirmal K. Manna, Dipak Kumar Mandal and Rama Subba Reddy Gorla

This study aims to explore magnetohydrodynamic (MHD) thermo-bioconvection of oxytactic microorganisms in multi-physical directions addressing thermal gradient, lid motion, porous…

Abstract

Purpose

This study aims to explore magnetohydrodynamic (MHD) thermo-bioconvection of oxytactic microorganisms in multi-physical directions addressing thermal gradient, lid motion, porous substance and magnetic field collectively using a typical differentially heated two-sided lid-driven cavity. The consequences of a range of pertinent parameters on the flow structure, temperature, oxygen isoconcentration and microorganisms’ isoconcentration are examined and explained in great detail.

Design/methodology/approach

Two-dimensional governing equations in a two-sided lid-driven porous cavity heated differentially and packed with oxytactic microorganisms under the influence of the magnetic field are solved numerically using the finite volume method-based computational fluid dynamics code. The evolved flow physics is analyzed assuming a steady laminar incompressible Newtonian flow within the validity of the Boussinesq approximation. The transport of oxytactic microorganisms is formulated by augmenting the continuum model.

Findings

The mechanisms involved with MHD-mixed thermo-bioconvection could have potential benefits for industrial exploitation. The distributions of fluid flow, temperature, oxygen and motile microorganisms are markedly modified with the change of convection regime. Both speed and direction of the translating walls significantly influence the concentration of the motile microorganisms. The concentration of oxygen and motile microorganisms is found to be higher at the upper portion of the cavity. The overall patterns of the fluid flow, temperature and the oxygen and microorganism distributions are markedly affected by the increase of magnetic field strength.

Research limitations/implications

The concept of the present study could be extended to other areas of bioconvection in the presence of gravity, light or chemical attraction.

Practical implications

The findings of the present study could be used to multi-physical applications like biomicrosystems, pollutant dispersion in aquifers, chemical catalytic converters, geothermal energy usage, petroleum oil reservoirs, enhanced oil recovery, fuel cells, thermal energy storage and others.

Originality/value

The MHD-mixed thermo-bioconvection of oxytactic microorganisms is investigated under different parametric conditions. The effect of pertinent parameters on the heat and mass transfers are examined using the Nusselt number and Sherwood number.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 2 June 2021

Kamel Sabahi, Amin Hajizadeh and Mehdi Tavan

In this paper, a novel Lyapunov–Krasovskii stable fuzzy proportional-integral-derivative (PID) (FPID) controller is introduced for load frequency control of a time-delayed…

Abstract

Purpose

In this paper, a novel Lyapunov–Krasovskii stable fuzzy proportional-integral-derivative (PID) (FPID) controller is introduced for load frequency control of a time-delayed micro-grid (MG) system that benefits from a fuel cell unit, wind turbine generator and plug-in electric vehicles.

Design/methodology/approach

Using the Lyapunov–Krasovskii theorem, the adaptation laws for the consequent parameters and output scaling factors of the FPID controller are developed in such a way that an upper limit (the maximum permissible value) for time delay is introduced for the stability of the closed-loop MG system. In this way, there is a stable FPID controller, the adaptive parameters of which are bounded. In the obtained adaptation laws and the way of stability analyses, there is no need to approximate the nonlinear model of the controlled system, which makes the implementation process of the proposed adaptive FPID controller much simpler.

Findings

It has been shown that for a different amount of time delay and intermittent resources/loads, the proposed adaptive FPID controller is able to enforce the frequency deviations to zero with better performance and a less amount of energy. In the proposed FPID controller, the increase in the amount of time delay leads to a small increase in the amount of overshoot/undershoot and settling time values, which indicate that the proposed controller is robust to the time delay changes.

Originality/value

Although the designed FPID controllers in the literature are very efficient in being applied to the uncertain and nonlinear systems, they suffer from stability problems. In this paper, the stability of the FPID controller has been examined in applying to the frequency control of a nonlinear input-delayed MG system. Based on the Lyapunov–Krasovskii theorem and using rigorous mathematical analyses, the stability conditions and the adaptation laws for the parameters of the FPID controller have been obtained in the presence of input delay and nonlinearities of the MG system.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 40 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of over 3000