Search results

1 – 10 of 505
Article
Publication date: 11 February 2020

Rafid Hussein, Sudharshan Anandan, Myranda Spratt, Joseph W. Newkirk, K. Chandrashekhara, Misak Heath and Michael Walker

Honeycomb cellular structures exhibit unique mechanical properties such as high specific strength, high specific stiffness, high energy absorption and good thermal and acoustic…

Abstract

Purpose

Honeycomb cellular structures exhibit unique mechanical properties such as high specific strength, high specific stiffness, high energy absorption and good thermal and acoustic performance. This paper aims to use numerical modeling to investigate the effective elastic moduli, in-plane and out-of-plane, for thick-walled honeycombs manufactured using selective laser melting (SLM).

Design/methodology/approach

Theoretical predictions were performed using homogenization on a sample scale domain equivalent to the as-manufactured dimensions. A Renishaw AM 250 machine was used to manufacture hexagonal honeycomb samples with wall thicknesses of 0.2 to 0.5 mm and a cell size of 3.97 mm using 304 L steel powder. The SLM-manufactured honeycombs and cylindrical test coupons were tested using flatwise and edgewise compression. Three-dimensional finite element and strain energy homogenization were conducted to determine the effective elastic properties, which were validated by the current experimental outcomes and compared to analytical models from the literature.

Findings

Good agreement was found between the results of the effective Young’s moduli ratios numerical modeling and experimental observations. In-plane effective elastic moduli were found to be more sensitive to geometrical irregularity compared to out-of-plane effective moduli, which was confirmed by the analytical models. Also, it was concluded that thick-walled SLM manufactured honeycombs have bending-dominated in-plane compressive behavior and a stretch-dominated out-of-plane compressive behavior, which matched well with the simulation and numerical models predictions.

Originality/value

This work uses three-dimensional finite element and strain energy homogenization to evaluate the effective moduli of SLM manufactured honeycombs.

Details

Rapid Prototyping Journal, vol. 26 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 7 July 2017

Puneet Kumar and Gaurav Srivastava

Reinforced concrete structural frames with masonry infills (infill-frames) are commonly used for construction worldwide. While the behavior of such frames has been studied…

Abstract

Purpose

Reinforced concrete structural frames with masonry infills (infill-frames) are commonly used for construction worldwide. While the behavior of such frames has been studied extensively in the context of earthquake loading, studies related to their fire performance are limited. Therefore, this study aims to characterize the behavior of infill-frames under fire exposure by presenting a state-of-the-art literature review of the same.

Design/methodology/approach

Both experimental and computational studies have been included with a special emphasis on numerical modeling (simplified as well as advanced). The cold behavior of the infill-frame and its design requirements in case of fire exposure are first reviewed to set the context. Subsequently, the applicability of numerical modeling strategies developed for modeling cold infill-frames to simulate their behavior under fire is critically examined.

Findings

The major hurdles in developing generic numerical models for analyzing thermo-mechanical behavior of infill-frames are identified as: lack of temperature-dependent material properties, scarcity of experimental studies for validation and idealizations in coupling between thermal and structural analysis.

Originality value

This study presents one of the most popular research problems connected with practical and reliable utilization of numerical models, as a good alternative to expensive traditional furnace testing, in assessing fire resistance of infill-frames. It highlights major challenges in thermo-mechanical modeling of infill-frames and critically reviews the available approaches for modeling infill-frames subjected to fire.

Details

Journal of Structural Fire Engineering, vol. 8 no. 3
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 27 November 2023

Maha Assad, Rami Hawileh, Ghada Karaki, Jamal Abdalla and M.Z. Naser

This research paper aims to investigate reinforced concrete (RC) walls' behaviour under fire and identify the thermal and mechanical factors that affect their performance.

Abstract

Purpose

This research paper aims to investigate reinforced concrete (RC) walls' behaviour under fire and identify the thermal and mechanical factors that affect their performance.

Design/methodology/approach

A three-dimensional (3D) finite element (FE) model is developed to predict the response of RC walls under fire and is validated through experimental tests on RC wall specimens subjected to fire conditions. The numerical model incorporates temperature-dependent properties of the constituent materials. Moreover, the validated model was used in a parametric study to inspect the effect of the fire scenario, reinforcement concrete cover, reinforcement ratio and configuration, and wall thickness on the thermal and structural behaviour of the walls subjected to fire.

Findings

The developed 3D FE model successfully predicted the response of experimentally tested RC walls under fire conditions. Results showed that the fire resistance of the walls was highly compromised under hydrocarbon fire. In addition, the minimum wall thickness specified by EC2 may not be sufficient to achieve the desired fire resistance under considered fire scenarios.

Originality/value

There is limited research on the performance of RC walls exposed to fire scenarios. The study contributed to the current state-of-the-art research on the behaviour of RC walls of different concrete types exposed to fire loading, and it also identified the factors affecting the fire resistance of RC walls. This guides the consideration and optimisation of design parameters to improve RC walls performance in the event of a fire.

Details

Journal of Structural Fire Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 29 May 2023

Diana L. Ramírez-Gutiérrez, Enrique Cuan-Urquizo and Rita Q. Fuentes-Aguilar

Demanding applications could benefit from the mathematical parametrization of lattice structures as this could lead not only to the characterization of structure–property relation…

Abstract

Purpose

Demanding applications could benefit from the mathematical parametrization of lattice structures as this could lead not only to the characterization of structure–property relation but also facilitates the tailoring of the effective mechanical properties. This paper aims to characterize the mechanical performance of sine-based lattices. The characterization includes the results of in-plane Poisson’s ratio plates models, and the stiffness of additively manufactured lattice plates when loaded in the out-of-plane direction, with the objective of obtaining a relation with their geometrical parameters.

Design/methodology/approach

The geometrical parameter–Poisson’s ratio relationship was characterized via finite element (FE) simulations. The stiffness was also measured on additively manufactured polylactic acid lattice plates and contrasted with FE computations.

Findings

The characterization of auxetic lattice plates performed using in-plane and out-of-plane loading leads to key properties when deciding the geometry specific for applications: relative density, auxetic behavior and stiffness. Approximately 26% reduction of stiffness was observed between the square lattice and sine-based lattices of the same volume fraction.

Originality/value

Auxetic metamaterials are potential candidates for applications in biomedical engineering, smart sensors, sports and soft robotics. This paper aims to contribute to the existing gap in the study of auxetic metamaterials subjected to complex loading conditions, other than simple tension and compression, required for the mentioned applications.

Details

Rapid Prototyping Journal, vol. 29 no. 9
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 30 August 2021

Iman Sedighi, Majid R. Ayatollahi, Bahador Bahrami, Marco A. Pérez-Martínez and Andrés A. Garcia-Granada

The purpose of this paper is to study the Mode I fracture behavior of polycarbonate (PC) parts produced using fused deposition modeling (FDM). The focus of this study is on…

Abstract

Purpose

The purpose of this paper is to study the Mode I fracture behavior of polycarbonate (PC) parts produced using fused deposition modeling (FDM). The focus of this study is on samples printed along the out-of-plane direction with different raster angles.

Design/methodology/approach

Tensile and Mode I fracture tests were conducted. Semi-circular bend specimens were used for the fracture tests, which were printed in four different raster patterns of (0/90), (15/−75) (30/−60) and (45/−45). Moreover, the finite element method (FEM) was used to determine the applicability of linear elastic fracture mechanics (LEFM) for the printed PC parts. The fracture toughness results, as well as the fracture path and the fracture surfaces, were studied to describe the fracture behavior of the samples.

Findings

Finite element results confirm that the use of LEFM is allowed for the tested PC samples. The fracture toughness results show that changing the direction of the printed rasters can have an effect of up to 50% on the fracture toughness of the printed parts, with the (+45/−45) and (0/90) orientations having the highest and lowest resistance to crack propagation, respectively. Moreover, except for the (0/90) orientation, the other samples have higher crack resistance compared to the bulk material. The fracture toughness of the tested PC depends more on the toughness of the printed sample, rather than its tensile strength.

Originality/value

The toughness and the energy absorption capability of the printed samples (with different raster patterns) were identified as the main properties affecting the fracture toughness of the AM PC parts. Because the fracture resistance of almost all the samples was higher than that of the base material, it is evident that by choosing the right raster patterns for 3D-printed parts, very high resistance to crack growth may be obtained. Also, using FEM and comparing the size of the plastic zones, it was concluded that, although the tensile curves show nonlinearity, LEFM is still applicable for the printed parts.

Details

Rapid Prototyping Journal, vol. 28 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 16 August 2019

Carlos Couto, Élio Maia, Paulo Vila Real and Nuno Lopes

The purpose of this paper is to assess whether the adaptation to fire of current proposals/design methodologies at normal temperature is capable of producing accurate predictions…

Abstract

Purpose

The purpose of this paper is to assess whether the adaptation to fire of current proposals/design methodologies at normal temperature is capable of producing accurate predictions of resistance for the out-of-plane stability of tapered beams.

Design/methodology/approach

The adaptation of these methodologies to fire has been done by accounting for the reduction in steel material properties with the temperature. Results were then compared to FEM calculations by performing GMNIA analyses to determine the ultimate strength of the numerical models and to ascertain the validity and accuracy of the adapted methodologies.

Findings

Although all methodologies produce safe results at normal temperatures, only the general method is recommended for the safety verification at elevated temperatures, although the data points were overly conservative. This investigation demonstrates the need of proper and accurate design methods for tapered beams at elevated temperatures, which should be the subject of future developments.

Research limitations/implications

The research in this paper is limited to the adaptation of existing room temperature design methods to fire. Therefore, possible assumptions made during the conception of the initial formulae, which may be valid exclusively for 20ºC, may have been disregarded.

Originality/value

For the time being, design methodologies for the safety check of tapered beams for the case of fire are inexistent. This paper investigates the adaptation of existing room temperature design to the fire situation by providing insights on their accuracy level, as well as on how to proceed. Finally, a safe design methodology for tapered beams in case of fire is provided until improved design methods are developed.

Details

Journal of Structural Fire Engineering, vol. 10 no. 4
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 11 June 2018

Guilherme Alencar, Gonçalo Ferreira, Abílio M.P. de Jesus and Rui Calçada

The purpose of this paper is to investigate the fatigue performance of a welded detail from a composite steel-concrete railway twin girder bridge caused by a passenger train…

Abstract

Purpose

The purpose of this paper is to investigate the fatigue performance of a welded detail from a composite steel-concrete railway twin girder bridge caused by a passenger train circulating at varying speeds, by identifying the dynamic amplification scenarios induced by resonance. For this purpose, the hotspot stress method is used, instead of the traditional nominal stress methods.

Design/methodology/approach

This paper assesses the fatigue behavior of a welded connection considering critical stress concentration locations (hotspot). Finite element analysis (FEA) is applied, utilizing both a global and a local submodel, made compatible by displacements field interpolation. The dynamic response is obtained through the modal superposition method. Stress cycles are extracted with the rainflow counting method and the fatigue damage is calculated with Palmgren-Miner’s rule. The feasibility of five submodels with different mesh densities, i.e. 1, 2, 4, 8 and 20 mm is verified.

Findings

An increase in the fatigue damage due to the resonance effect was found for the train traveling at a speed of 225 km/h. A good agreement between the computed fatigue damage for the submodels is achieved. However, a non-monotonic hotspot stress/fatigue damage vs mesh density convergence was observed with a peak observed for the 4 mm model, which endorses the mesh sensitivity that could occur when using the surface stress extrapolation detailed rules specified in the standards for the hotspot stress method.

Originality/value

Advanced dynamic analyses are proposed to obtain local stresses in order to apply a local method for the fatigue assessment of a bridge’s structure subjected to high-speed railway traffic on the basis of the mode superposition technique resulting in much less computing times.

Details

International Journal of Structural Integrity, vol. 9 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 11 June 2018

Patricia Raposo, André Furtado, António Arêde, Humberto Varum and Hugo Rodrigues

The infill masonry walls in recent worldwide earthquakes have shown that it is necessary to conduct further studies to characterize the behavior of existing buildings and, in…

Abstract

Purpose

The infill masonry walls in recent worldwide earthquakes have shown that it is necessary to conduct further studies to characterize the behavior of existing buildings and, in particular, of infill masonry walls under seismic activity. The lack of characterization studies of infill walls made by concrete blocks justifies the investigation reported herein, which includes experimental tests on sample sets to evaluate the mechanical properties of masonry components (units and mortar) and assemblages (wallets) made with masonry units from Faial. For the later, normal compressive, diagonal tensile/shear and out-of-plane flexural strengths were obtained according to standard procedures, the results of which are presented in the manuscript. The paper aims to discuss these issues.

Design/methodology/approach

One experimental campaign was conducted with the aim to mechanically characterize concrete blocks masonry samples. Several experimental tests were carried out in full-scale masonry concrete wallets according to the constructive methodology used.

Findings

Based on the data obtained from the mechanical characterization tests of the concrete masonry blocks, it can be seen that under simple compression, the masonry specimens’ average resistance is about 6 times superior than the average resistance to diagonal shear/tension, while the stiffness is almost doubled. In simple compression tests, it was observed that the masonry specimens cracked in areas of higher drilling of the blocks. In the tensile tests by diagonal compression, it was found that the test specimens were mainly fissured by the block/mortar joint interfaces, following the delineation of settlement and top joints.

Originality/value

There are no experimental results available in the literature for this type of bricks that can contribute to the development of numerical studies.

Details

International Journal of Structural Integrity, vol. 9 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 1 April 1984

I. Vayas

During the 1970s 4 steel bridges in Australia, England, Austria and Germany, failed due to the buckling of their compressed plates. As a result of these failures much research…

Abstract

During the 1970s 4 steel bridges in Australia, England, Austria and Germany, failed due to the buckling of their compressed plates. As a result of these failures much research, both theoretical and experimental, has been initiated.

Details

Engineering Computations, vol. 1 no. 4
Type: Research Article
ISSN: 0264-4401

Article
Publication date: 28 May 2020

Ching-Shan Chen

Taiwan experiences frequent seismic activity. Major earthquakes in recent history have seriously damaged the school buildings. School buildings in Taiwan are intended to serve…

Abstract

Purpose

Taiwan experiences frequent seismic activity. Major earthquakes in recent history have seriously damaged the school buildings. School buildings in Taiwan are intended to serve both as places of education and as temporary shelters in the aftermath of major earthquakes. Therefore, the seismic performance assessments of school buildings are critical issues that deserve investigation.

Design/methodology/approach

This paper develops a methodology that uses principal component analysis to generalize the seismic factors from the basic seismic parameters of school buildings, uses data mining to cluster different school building sizes and uses grey theory to analyze the relationship between seismic factors and the seismic performance of school buildings. Additionally, this paper employs the Artificial Neural Network (ANN) to deduce the seismic assessment model for school buildings. Finally, it adopts support vector machine to validate the ANN’s deductive results.

Findings

An empirical study was conducted on 326 school buildings in the central area of Taichung City, Taiwan, to illustrate the effectiveness of the proposed approach. Results show that thickness of wall and width of middle-row column relate significantly with school-building seismic performance.

Originality/value

This paper provides a model that structural engineers or architects may use to design school buildings that are adequately resistant to earthquakes as well as a reference for future academic research.

Details

Engineering Computations, vol. 37 no. 9
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of 505