Search results

1 – 10 of over 4000
Article
Publication date: 23 November 2021

Jalal Javadi Moghaddam, Davood Momeni and Ghasem Zarei

This research presents a design method for designing greenhouse structures based on topology optimization. Moreover, the structural design of a gothic greenhouse is proposed in…

Abstract

Purpose

This research presents a design method for designing greenhouse structures based on topology optimization. Moreover, the structural design of a gothic greenhouse is proposed in which its structural strength has been improved by using this proposed method. In this method, the design of the structure is done mathematically; therefore, in the design process, more attention can be focused on the constraint space and boundary conditions. It was also shown how the static reliability and fatigue coefficients will change as a result of the design of the greenhouse structure with this method. Another purpose of this study is to find the weakest part of the greenhouse structure against lateral winds and other general loads on the greenhouse structure.

Design/methodology/approach

In the proposed method, the outer surface and the allowable volume as a constraint domain were considered. The desired loads can be located on the constraint domain. The topology optimization was used to minimize the mass and structural compliance as the objective function. The obtained volume was modified for simplifying the construction. The changes in the shape of the greenhouse structure were investigated by choosing three different penalty numbers for the topology optimization algorithm. The final design of the proposed structure was performed based on the total simultaneous critical loads on the structure. The results of the proposed method were compared in the order of different volume fractions. This showed that the volume fraction approach can significantly reduce the weight of the structure while maintaining its strength and stability.

Findings

Topology optimization results showed different strut and chords composition because of the changes in maximum mass limit and volume fraction. The results showed that the fatigue was more hazardous, and it decreased the strength of structure nearly three times more than a static analysis. Further, it was noticed that how the penalty numbers can affect topology optimization results. An optimal design based on topology optimization results was presented to improve the proposed greenhouse design against destruction and demolition. Furthermore, this study shows the most sensitive part of the greenhouse against the standard loads of wind, snow, and crop.

Originality/value

The obtained designs were compared with a conventional arch greenhouse, and then the structural performances were shown based on standard loads. The results showed that in designing the proposed structure, the optimized changes increased the structure strength against the standard loads compared to a simple arch greenhouse. Moreover, the stress safety factor and fatigue safety factor because of different designs of this structure were also compared with each other.

Details

World Journal of Engineering, vol. 20 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 6 February 2024

S. P. Sreenivas Padala and Prabhanjan M. Skanda

The purpose of this paper is to develop a building information modelling (BIM)-based multi-objective optimization (MOO) framework for volumetric analysis of buildings during early…

Abstract

Purpose

The purpose of this paper is to develop a building information modelling (BIM)-based multi-objective optimization (MOO) framework for volumetric analysis of buildings during early design stages. The objective is to optimize volumetric spaces (3D) instead of 2D spaces to enhance space utilization, thermal comfort, constructability and rental value of buildings

Design/methodology/approach

The integration of two fundamental concepts – BIM and MOO, forms the basis of proposed framework. In the early design phases of a project, BIM is used to generate precise building volume data. The non-sorting genetic algorithm-II, a MOO algorithm, is then used to optimize extracted volume data from 3D BIM models, considering four objectives: space utilization, thermal comfort, rental value and construction cost. The framework is implemented in context of a school of architecture building project.

Findings

The findings of case study demonstrate significant improvements resulting from MOO of building volumes. Space utilization increased by 30%, while thermal comfort improved by 20%, and construction costs were reduced by 10%. Furthermore, rental value of the case study building increased by 33%.

Practical implications

The proposed framework offers practical implications by enabling project teams to generate optimal building floor layouts during early design stages, thereby avoiding late costly changes during construction phase of project.

Originality/value

The integration of BIM and MOO in this study provides a unique approach to optimize building volumes considering multiple factors during early design stages of a project

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 1 May 2023

Pankaj Kumar Detwal, Rajat Agrawal, Ashutosh Samadhiya, Anil Kumar and Jose Arturo Garza-Reyes

The literature that is presently available on sustainable supply chain management (SSCM) combining optimization and industry 4.0 techniques falls short in its depictions of the…

467

Abstract

Purpose

The literature that is presently available on sustainable supply chain management (SSCM) combining optimization and industry 4.0 techniques falls short in its depictions of the recent developments, budding pertinent areas and the importance of SSCM in the growth of industrial economies around the world. This article's main objective is to analyze current trends, highlight the latest initiatives and perform a meta-analysis of the literature that is currently accessible in the SSCM area with a special focus on optimization and industry 4.0 techniques. The paper also proposes a conceptual framework that will assist in illuminating how the ideas of optimization and industry 4.0 may contribute to realizing sustainability in supply chains.

Design/methodology/approach

The proposed study systematically reviews 85 research publications published between 2010 and 2022 in referenced peer-reviewed journals in diverse fields, including engineering, business and management, services and healthcare. Numerous categories are considered throughout the examination of the literature, including year-wise publications, prominent journals, type of research design, concerned industry and research technique used.

Findings

The study demonstrates a deeper comprehension of the literature in the field and its evolution throughout numerous industry sectors, which is helpful for both practitioners and academics. The results from the content analysis highlight various future research opportunities in the domain.

Originality/value

This is one of the first research articles that have attempted to establish, analyze and highlight the current trends and initiatives in the SSCM domain from an optimization and industry 4.0 techniques viewpoint. The cluster-based future research propositions also enhance the novelty of the study.

Details

Benchmarking: An International Journal, vol. 31 no. 4
Type: Research Article
ISSN: 1463-5771

Keywords

Article
Publication date: 26 September 2023

Rossana Fernandes, Benyang Hu, Zhichao Wang, Zheng Zhang and Ali Y. Tamijani

This paper aims to assess the feasibility of additively manufactured wind tunnel models. The additively manufactured model was used to validate a computational framework allowing…

Abstract

Purpose

This paper aims to assess the feasibility of additively manufactured wind tunnel models. The additively manufactured model was used to validate a computational framework allowing the evaluation of the performance of five wing models.

Design/methodology/approach

An optimized fighter wing was additively manufactured and tested in a low-speed wind tunnel to obtain the aerodynamic coefficients and deflections at different speeds and angles of attack. The flexible wing model with optimized curvilinear spars and ribs was used to validate a finite element framework that was used to study the aeroelastic performance of five wing models. As a computationally efficient optimization method, homogenization-based topology optimization was used to generate four different lattice internal structures for the wing in this study. The efficiency of the spline-based optimization used for the spar-rib model and the lattice-based optimization used for the other four wings were compared.

Findings

The aerodynamic loads and displacements obtained experimentally and computationally were in good agreement, proving that additive manufacture can be used to create complex accurate models. The study also shows the efficiency of the homogenization-based topology optimization framework in generating designs with superior stiffness.

Originality/value

To the best of the authors’ knowledge, this is the first time a wing model with curvilinear spars and ribs was additively manufactured as a single piece and tested in a wind tunnel. This research also demonstrates the efficiency of homogenization-based topology optimization in generating enhanced models of different complexity.

Details

Rapid Prototyping Journal, vol. 30 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 September 2023

Iván La Fé-Perdomo, Jorge Andres Ramos-Grez, Ramón Quiza, Ignacio Jeria and Carolina Guerra

316 L stainless steel alloy is potentially the most used material in the selective laser melting (SLM) process because of its versatility and broad fields of applications (e.g…

Abstract

Purpose

316 L stainless steel alloy is potentially the most used material in the selective laser melting (SLM) process because of its versatility and broad fields of applications (e.g. medical devices, tooling, automotive, etc.). That is why producing fully functional parts through optimal printing configuration is still a key issue to be addressed. This paper aims to present an entirely new framework for simultaneously reducing surface roughness (SR) while increasing the material processing rate in the SLM process of 316L stainless steel, keeping fundamental mechanical properties within their allowable range.

Design/methodology/approach

Considering the nonlinear relationship between the printing parameters and features analyzed in the entire experimental space, machine learning and statistical modeling methods were defined to describe the behavior of the selected variables in the as-built conditions. First, the Box–Behnken design was adopted and corresponding experimental planning was conducted to measure the required variables. Second, the relationship between the laser power, scanning speed, hatch distance, layer thickness and selected responses was modeled using empirical methods. Subsequently, three heuristic algorithms (nonsorting genetic algorithm, multi-objective particle swarm optimization and cross-entropy method) were used and compared to search for the Pareto solutions of the formulated multi-objective problem.

Findings

A minimum SR value of approximately 12.83 μm and a maximum material processing rate of 2.35 mm3/s were achieved. Finally, some verification experiments recommended by the decision-making system implemented strongly confirmed the reliability of the proposed optimization methodology by providing the ultimate part qualities and their mechanical properties nearly identical to those defined in the literature, with only approximately 10% of error at the maximum.

Originality/value

To the best of the authors’ knowledge, this is the first study dealing with an entirely different and more comprehensive approach for optimizing the 316 L SLM process, embedding it in a unique framework of mechanical and surface properties and material processing rate.

Details

Rapid Prototyping Journal, vol. 29 no. 10
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 26 March 2024

Keyu Chen, Beiyu You, Yanbo Zhang and Zhengyi Chen

Prefabricated building has been widely applied in the construction industry all over the world, which can significantly reduce labor consumption and improve construction…

Abstract

Purpose

Prefabricated building has been widely applied in the construction industry all over the world, which can significantly reduce labor consumption and improve construction efficiency compared with conventional approaches. During the construction of prefabricated buildings, the overall efficiency largely depends on the lifting sequence and path of each prefabricated component. To improve the efficiency and safety of the lifting process, this study proposes a framework for automatically optimizing the lifting path of prefabricated building components using building information modeling (BIM), improved 3D-A* and a physic-informed genetic algorithm (GA).

Design/methodology/approach

Firstly, the industry foundation class (IFC) schema for prefabricated buildings is established to enrich the semantic information of BIM. After extracting corresponding component attributes from BIM, the models of typical prefabricated components and their slings are simplified. Further, the slings and elements’ rotations are considered to build a safety bounding box. Secondly, an efficient 3D-A* is proposed for element path planning by integrating both safety factors and variable step size. Finally, an efficient GA is designed to obtain the optimal lifting sequence that satisfies physical constraints.

Findings

The proposed optimization framework is validated in a physics engine with a pilot project, which enables better understanding. The results show that the framework can intuitively and automatically generate the optimal lifting path for each type of prefabricated building component. Compared with traditional algorithms, the improved path planning algorithm significantly reduces the number of nodes computed by 91.48%, resulting in a notable decrease in search time by 75.68%.

Originality/value

In this study, a prefabricated component path planning framework based on the improved A* algorithm and GA is proposed for the first time. In addition, this study proposes a safety-bounding box that considers the effects of torsion and slinging of components during lifting. The semantic information of IFC for component lifting is enriched by taking into account lifting data such as binding positions, lifting methods, lifting angles and lifting offsets.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 30 April 2024

Niharika Varshney, Srikant Gupta and Aquil Ahmed

This study aims to address the inherent uncertainties within closed-loop supply chain (CLSC) networks through the application of a multi-objective approach, specifically focusing…

Abstract

Purpose

This study aims to address the inherent uncertainties within closed-loop supply chain (CLSC) networks through the application of a multi-objective approach, specifically focusing on the optimization of integrated production and transportation processes. The primary purpose is to enhance decision-making in supply chain management by formulating a robust multi-objective model.

Design/methodology/approach

In dealing with uncertainty, this study uses Pythagorean fuzzy numbers (PFNs) to effectively represent and quantify uncertainties associated with various parameters within the CLSC network. The proposed model is solved using Pythagorean hesitant fuzzy programming, presenting a comprehensive and innovative methodology designed explicitly for handling uncertainties inherent in CLSC contexts.

Findings

The research findings highlight the effectiveness and reliability of the proposed framework for addressing uncertainties within CLSC networks. Through a comparative analysis with other established approaches, the model demonstrates its robustness, showcasing its potential to make informed and resilient decisions in supply chain management.

Research limitations/implications

This study successfully addressed uncertainty in CLSC networks, providing logistics managers with a robust decision-making framework. Emphasizing the importance of PFNs and Pythagorean hesitant fuzzy programming, the research offered practical insights for optimizing transportation routes and resource allocation. Future research could explore dynamic factors in CLSCs, integrate real-time data and leverage emerging technologies for more agile and sustainable supply chain management.

Originality/value

This research contributes significantly to the field by introducing a novel and comprehensive methodology for managing uncertainty in CLSC networks. The adoption of PFNs and Pythagorean hesitant fuzzy programming offers an original and valuable approach to addressing uncertainties, providing practitioners and decision-makers with insights to make informed and resilient decisions in supply chain management.

Details

Journal of Modelling in Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1746-5664

Keywords

Article
Publication date: 1 August 2022

Rustanto Nanang, Connie Susilawati and Martin Skitmore

Governments in developing countries manage their considerable state assets for public service delivery directly. In Indonesia, the Directorate of State Asset Management…

Abstract

Purpose

Governments in developing countries manage their considerable state assets for public service delivery directly. In Indonesia, the Directorate of State Asset Management responsible for developing the national strategy for state asset optimization requires the determination of key elements and prioritization tools. The purpose of this paper is to show that a simple calculation using the combination of the balanced scorecard (BCS) and analytical hierarchy process (AHP) will help in the prioritization of strategy development.

Design/methodology/approach

A questionnaire survey of 131 multistakeholder respondents to identify the most important key elements and the best alternative for asset optimization was done in this study.

Findings

The respondents agree on the most important key elements, and that the best alternative for asset optimization is the efficient maintenance of assets. Competitive human resources comprise the recommended second key element, and that improvements in asset performance and value will improve public service as the second-highest alternative. This study also shows the importance of the integration of asset optimization in existing government strategic instruments supported by a comprehensive data set related to public assets and their performance.

Originality/value

This paper provides a new contribution to integrating asset optimization strategies as the core of the organization’s performance and prioritization strategies. Additional BSC perspectives are suggested, with the inclusion of AHP for prioritization. In addition, this study includes the opinions of all the stakeholders, from external users to the central management. The flexibility of the tools to adapt to the existing strategic framework will allow their application by different agencies and in different countries.

Details

Construction Innovation , vol. 23 no. 5
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 4 March 2024

Hemanth Kumar N. and S.P. Sreenivas Padala

The construction industry is tasked with creating sustainable, efficient and cost-effective buildings. This study aims to develop a building information modeling (BIM)-based…

Abstract

Purpose

The construction industry is tasked with creating sustainable, efficient and cost-effective buildings. This study aims to develop a building information modeling (BIM)-based multiobjective optimization (MOO) model integrating the nondominated sorting genetic algorithm III (NSGA-III) to enhance sustainability. The goal is to reduce embodied energy and cost in the design process.

Design/methodology/approach

Through a case study research method, this study uses BIM, NSGA-III and real-world data in five phases: literature review, identification of factors, BIM model development, MOO model creation and validation in the architecture, engineering and construction sectors.

Findings

The innovative BIM-based MOO model optimizes embodied energy and cost to achieve sustainable construction. A commercial building case study validation showed a reduction of 30% in embodied energy and 21% in cost. This study validates the model’s effectiveness in integrating sustainability goals, enhancing decision-making, collaboration, efficiency and providing superior assessment.

Practical implications

This model delivers a unified approach to sustainable design, cutting carbon footprint and strengthening the industry’s ability to attain sustainable solutions. It holds potential for broader application and future integration of social and economic factors.

Originality/value

The research presents a novel BIM-based MOO model, uniquely focusing on sustainable construction with embodied energy and cost considerations. This holistic and innovative framework extends existing methodologies applicable to various buildings and paves the way for additional research in this area.

Article
Publication date: 6 September 2022

Mohammad AliFarsi

Unmanned aircraft applications are quickly expanded in different fields. These systems are complex that include several subsystems with different types of technologies…

Abstract

Purpose

Unmanned aircraft applications are quickly expanded in different fields. These systems are complex that include several subsystems with different types of technologies. Maintenance and inspection planning is necessary to obtain optimal performance and effectiveness. The failure rate in these systems is more than commercial and manned aircraft since they are usually cheaper. But maintenance and operation planning are difficult because we deal with a system that has multi-components, multi-failure models, and different dependencies between subsystems without any advanced health monitoring system. In this paper, this matter is considered and a framework to determine optimal maintenance and inspection plan for this type of system is proposed to improve system reliability and availability. The new criteria according to this field are proposed.

Design/methodology/approach

Maintenance of unmanned systems influences their readiness; also, according to the complexity of the system and different types of components, maintenance programming is a vital requirement. The plan should consider several criteria and disciplines; thus, multicriteria decision approaches may be useful. On another side, the reliability and safety of unmanned aircraft are the most important requirements in the design and operation phases. The authors consider these parameters and develop a framework based on risk-based maintenance to overcome the problems for unmanned systems. This framework consists of two stages: at the first stage, the critical components and failure modes are determined by FMEA, and in the second stage, the priority of maintenance tasks is determined by a fuzzy multicriteria weighted decision system. In this study, fourteen criteria with different levels of importance are developed and proposed to find the best plan for maintenance and inspection intervals. These criteria have been extracted from the literature review, the author's experience, and expert opinions.

Findings

A novel framework for risk-based maintenance has been proposed. Risk determination and risk criteria are the most important factors in this framework. Risks are determined by FMEA, and new criteria are proposed that are used for decision-making. These criteria are proposed based on practical experience and experts' opinions for the maintenance process in the aeronautic industry. These are evaluated by industrial cases, and this framework capability has been demonstrated.

Research limitations/implications

The proposed framework and criteria for small unmanned aircraft have been developed based on a practical point of view and expert opinion. Thus for implementation in other aeronautic industries, the framework may need a minor modification.

Practical implications

Two important subsystems of an unmanned aircraft have been studied, and the capabilities of this method have been presented.

Originality/value

This research is original work to determine a maintenance program for unmanned aircraft that their application has rapidly grown up. Practical and design parameters have been considered in this work.

Details

Journal of Quality in Maintenance Engineering, vol. 29 no. 3
Type: Research Article
ISSN: 1355-2511

Keywords

1 – 10 of over 4000