Search results

1 – 10 of over 6000
Article
Publication date: 29 June 2012

Jihe Wang, Xibin Cao and Jinxiu Zhang

The purpose of this paper is to propose a fuel‐optimal virtual centre selection method for formation flying maintenance in the J2 perturbed environment.

Abstract

Purpose

The purpose of this paper is to propose a fuel‐optimal virtual centre selection method for formation flying maintenance in the J2 perturbed environment.

Design/methodology/approach

Based on the relative orbital elements (ROE) theory, the J2 perturbed relative motions between different satellites in the formation are analyzed, and then the fuel‐optimal virtual centre selection issue for formation flying maintenance are parameterized in terms of ROE. In order to determine the optimal virtual centre, two theories are proposed in terms of ROE.

Findings

Numerical simulations demonstrate that the fuel‐optimal virtual centre selection method is valid, and the control of the ROE of each satellite with respect to a virtual optimal centre of the formation is more efficient regarding the fuel consumption than the control of all satellites with respect to a satellite belonging to the formation.

Research limitations/implications

The fuel‐optimal virtual centre selection method is valid for formation flying mission whose member satellite in circular or near circular orbit.

Practical implications

The fuel‐optimal virtual centre selection approach can be used to solve formation flying maintenance problem which involves multiple satellites in the formation.

Originality/value

The paper proposes a fuel‐optimal virtual centre selection method in terms of ROE, and shows that keeping the formation with respect the optimal virtual centre is more fuel efficient.

Details

Aircraft Engineering and Aerospace Technology, vol. 84 no. 4
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 2 October 2018

Jihe Wang, Dexin Zhang, GuoZhong Chen and Xiaowei Shao

The purpose of this paper is to propose a new fuel-balanced formation keeping reference trajectories planning method based on selecting the virtual reference center(VRC) in a…

Abstract

Purpose

The purpose of this paper is to propose a new fuel-balanced formation keeping reference trajectories planning method based on selecting the virtual reference center(VRC) in a fuel-balanced sense in terms of relative eccentricity and inclination vectors (E/I vectors).

Design/methodology/approach

By using the geometrical intuitive relative E/I vectors theory, the fuel-balanced VRC selection problem is reformulated as the geometrical problem to find the optimal point to equalize the distances between the VRC and the points determined by the relative E/I vectors of satellites in relative E/I vectors plane, which is solved by nonlinear programming method.

Findings

Numerical simulations demonstrate that the new proposed fuel-balanced formation keeping strategy is valid, and the new method achieves better fuel-balanced performance than the traditional method, which keeps formation with respect to geometrical formation center.

Research limitations/implications

The new fuel-balanced formation keeping reference trajectories planning method is valid for formation flying mission whose member satellite is in circular or near circular orbit in J2 perturbed orbit environment.

Practical implications

The new fuel-balanced formation keeping reference trajectories planning method can be used to solve formation flying keeping problem, which involves multiple satellites in the formation.

Originality/value

The fuel-balanced reference trajectories planning problem is reformulated as a geometrical problem, which can provide insightful way to understand the dynamic nature of the fuel-balanced reference trajectories planning issue.

Details

Aircraft Engineering and Aerospace Technology, vol. 90 no. 6
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 3 January 2017

Xiaowei Shao, Jihe Wang, Dexin Zhang and Junli Chen

The purpose of this paper is to propose a modified fuel-balanced formation keeping strategy based on actively rotating satellites in the formation in the J2 perturbed environment.

Abstract

Purpose

The purpose of this paper is to propose a modified fuel-balanced formation keeping strategy based on actively rotating satellites in the formation in the J2 perturbed environment.

Design/methodology/approach

Based on the relative orbital elements theory, the J2 perturbed relative motions between different satellites in the formation are analyzed, and then, the method to estimate fuel required to keep the in-plane and out-of-plane relative motions is presented, based on which a modified fuel-balanced formation keeping strategy is derived by considering both in-plane and out-of-plane J2 perturbations.

Findings

Numerical simulations demonstrate that the modified fuel-balanced formation keeping strategy is valid, and the modified fuel-balanced formation keeping strategy requires less total fuel consumption than original Vadali and Alfriend’s method.

Research limitations/implications

The modified fuel-balanced formation keeping strategy is valid for formation flying mission whose member satellite is in circular or near-circular orbit.

Practical implications

The modified fuel-balanced formation keeping strategy can be used to solve formation flying keeping problem, which involves multiple satellites in the formation.

Originality/value

The modified fuel-balanced formation keeping strategy is proposed by considering both in-plane and out-of-plane J2 perturbations, which further reduce the fuel consumption than the original Vadali and Alfriend’s method.

Details

Aircraft Engineering and Aerospace Technology, vol. 89 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 7 September 2015

Xiaowei Shao, Mingxuan Song, Dexin Zhang and Ran Sun

The purpose of this paper is to present a method to conduct small satellite rendezvous mission by using the differential aerodynamic forces under J2 perturbation in low earth…

Abstract

Purpose

The purpose of this paper is to present a method to conduct small satellite rendezvous mission by using the differential aerodynamic forces under J2 perturbation in low earth orbit (LEO).

Design/methodology/approach

Each spacecraft is assumed to be equipped with two large flat plates, which can be controlled for generating differential accelerations in all three directions. Based on the kinetic theory, the aerodynamic lift and drag generated by a flat plate are calculated. To describe the relative dynamics under J2 perturbation, a modified model is derived from the high-fidelity linearized J2 equations proposed by Schweighart and Sedwick.

Findings

Simulation results demonstrate that the proposed method is valid and efficient to solve satellite rendezvous problem, and the modified model considering J2 effect shows better accuracy than the Horsley’s Clohessy–Wiltshire-based model.

Research limitations/implications

Because aerodynamic force will reduce drastically as orbital altitude rises, the rendezvous control strategy for small satellites presented in this paper should be limited to the scenarios when satellites are in LEO.

Practical implications

The rendezvous control method in this paper can be applied to solve satellite rendezvous maneuver problem for small satellites in LEO.

Originality/value

This paper proposes a modified differential aerodynamic control model by considering J2 perturbation, and simulation results show that it can achieve higher rendezvous control accuracy.

Details

Aircraft Engineering and Aerospace Technology: An International Journal, vol. 87 no. 5
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 1 March 2001

K.G.B. Bakewell

Compiled by K.G.B. Bakewell covering the following journals published by MCB University Press: Facilities Volumes 8‐18; Journal of Property Investment & Finance Volumes 8‐18;…

18735

Abstract

Compiled by K.G.B. Bakewell covering the following journals published by MCB University Press: Facilities Volumes 8‐18; Journal of Property Investment & Finance Volumes 8‐18; Property Management Volumes 8‐18; Structural Survey Volumes 8‐18.

Details

Structural Survey, vol. 19 no. 3
Type: Research Article
ISSN: 0263-080X

Article
Publication date: 1 September 2001

Index by subjects, compiled by K.G.B. Bakewell covering the following journals: Facilities Volumes 8‐18; Journal of Property Investment & Finance Volumes 8‐18; Property Management…

14799

Abstract

Index by subjects, compiled by K.G.B. Bakewell covering the following journals: Facilities Volumes 8‐18; Journal of Property Investment & Finance Volumes 8‐18; Property Management Volumes 8‐18; Structural Survey Volumes 8‐18.

Details

Facilities, vol. 19 no. 9
Type: Research Article
ISSN: 0263-2772

Article
Publication date: 1 March 2001

K.G.B. Bakewell

Compiled by K.G.B. Bakewell covering the following journals published by MCB University Press: Facilities Volumes 8‐18; Journal of Property Investment & Finance Volumes 8‐18;…

14419

Abstract

Compiled by K.G.B. Bakewell covering the following journals published by MCB University Press: Facilities Volumes 8‐18; Journal of Property Investment & Finance Volumes 8‐18; Property Management Volumes 8‐18; Structural Survey Volumes 8‐18.

Details

Property Management, vol. 19 no. 3
Type: Research Article
ISSN: 0263-7472

Article
Publication date: 1 May 2001

K.G.B. Bakewell

Compiled by K.G.B. Bakewell covering the following journals published by MCB University Press: Facilities Volumes 8‐18; Journal of Property Investment & Finance Volumes 8‐18;…

14182

Abstract

Compiled by K.G.B. Bakewell covering the following journals published by MCB University Press: Facilities Volumes 8‐18; Journal of Property Investment & Finance Volumes 8‐18; Property Management Volumes 8‐18; Structural Survey Volumes 8‐18.

Details

Journal of Property Investment & Finance, vol. 19 no. 5
Type: Research Article
ISSN: 1463-578X

Article
Publication date: 17 January 2022

Hanieh Shambayati, Mohsen Shafiei Nikabadi, Seyed Mohammad Ali Khatami Firouzabadi, Mohammad Rahmanimanesh and Sara Saberi

Supply chains (SCs) have been growingly virtualized in response to the market challenges and opportunities that are presented by new and cost-effective internet-based technologies…

Abstract

Purpose

Supply chains (SCs) have been growingly virtualized in response to the market challenges and opportunities that are presented by new and cost-effective internet-based technologies today. This paper designed a virtual closed-loop supply chain (VCLSC) network based on multiperiod, multiproduct and by using the Internet of Things (IoT). The purpose of the paper is the optimization of the VCLSC network.

Design/methodology/approach

The proposed model considers the maximization of profit. For this purpose, costs related to virtualization such as security, energy consumption, recall and IoT facilities along with the usual costs of the SC are considered in the model. Due to real-world demand fluctuations, in this model, demand is considered fuzzy. Finally, the problem is solved using the Grey Wolf algorithm and Firefly algorithm. A numerical example and sensitivity analysis on the main parameters of the model are used to describe the importance and applicability of the developed model.

Findings

The findings showed that the Firefly algorithm performed better and identified more profit for the SC in each period. Also, the results of the sensitivity analysis using the IoT in a VCLSC showed that the profit of the virtual supply chain (VSC) is higher compared to not using IoT due to tracking defective parts and identifying reversible products. In proposed model, chain members can help improve chain operations by tracking raw materials and products, delivering products faster and with higher quality to customers, bringing a new level of SC efficiency to industries. As a result, VSCs can be controlled, programmed and optimized remotely over the Internet based on virtual objects rather than direct observation.

Originality/value

There are limited researches on designing and optimizing the VCLSC network. This study is one of the first studies that optimize the VSC networks considering minimization of virtual costs and maximization of profits. In most researches, the theory of VSC and its advantages have been described, while in this research, mathematical optimization and modeling of the VSC have been done, and it has been tried to apply SC virtualization using the IoT. Considering virtual costs in VSC optimization is another originality of this research. Also, considering the uncertainty in the SC brings the issue closer to the real world. In this study, virtualization costs including security, recall and energy consumption in SC optimization are considered.

Highlights

  1. Investigates the role of IoT for virtual supply chain profit optimization and mathematical optimization of virtual closed-loop supply chain (VCLSC) based on multiperiod, multiproduct with emphasis on using the IoT under uncertainty.

  2. Considering the most important costs of virtualization of supply chain include: cost of IoT information security, cost of IoT energy consumption, cost of recall the production department, cost of IoT facilities.

  3. Selection of the optimal suppliers in each period and determination of the price of each returned product in virtual supply chain.

  4. Solving and validating the proposed model with two meta-heuristic algorithms (the Grey Wolf algorithm and Firefly algorithm).

Investigates the role of IoT for virtual supply chain profit optimization and mathematical optimization of virtual closed-loop supply chain (VCLSC) based on multiperiod, multiproduct with emphasis on using the IoT under uncertainty.

Considering the most important costs of virtualization of supply chain include: cost of IoT information security, cost of IoT energy consumption, cost of recall the production department, cost of IoT facilities.

Selection of the optimal suppliers in each period and determination of the price of each returned product in virtual supply chain.

Solving and validating the proposed model with two meta-heuristic algorithms (the Grey Wolf algorithm and Firefly algorithm).

Article
Publication date: 18 February 2021

KS Resma, GS Sharvani and Ramasubbareddy Somula

Current industrial scenario is largely dependent on cloud computing paradigms. On-demand services provided by cloud data centre are paid as per use. Hence, it is very important to…

Abstract

Purpose

Current industrial scenario is largely dependent on cloud computing paradigms. On-demand services provided by cloud data centre are paid as per use. Hence, it is very important to make use of the allocated resources to the maximum. The resource utilization is highly dependent on the allocation of resources to the incoming request. The allocation of requests is done with respect to the physical machines present in the datacenter. While allocating the tasks to these physical machines, it needs to be allocated in such a way that no physical machine is underutilized or over loaded. To make sure of this, optimal load balancing is very important.

Design/methodology/approach

The paper proposes an algorithm which makes use of the fitness functions and duopoly game theory to allocate the tasks to the physical machines which can handle the resource requirement of the incoming tasks. The major focus of the proposed work is to optimize the load balancing in a datacenter. When optimization happens, none of the physical machine is neither overloaded nor under-utilized, hence resulting in efficient utilization of the resources.

Findings

The performance of the proposed algorithm is compared with different existing load balancing algorithms such as round-robin load (RR) ant colony optimization (ACO), artificial bee colony (ABC) with respect to the selected parameters response time, virtual machine migrations, host shut down and energy consumption. All the four parameters gave a positive result when the algorithm is simulated.

Originality/value

The contribution of this paper is towards the domain of cloud load balancing. The paper is proposing a novel approach to optimize the cloud load balancing process. The results obtained show that response time, virtual machine migrations, host shut down and energy consumption are reduced in comparison to few of the existing algorithms selected for the study. The proposed algorithm based on the duopoly function and fitness function brings in an optimized performance compared to the four algorithms analysed.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 14 no. 2
Type: Research Article
ISSN: 1756-378X

Keywords

1 – 10 of over 6000