To read the full version of this content please select one of the options below:

Optimization of cloud load balancing using fitness function and duopoly theory

KS Resma (Computer Science and Engineering, Research Center Affiliated to VTU Belagavi, RV College of Engineering, Bangalore, India)
GS Sharvani (Computer Science and Engineering, RV College of Engineering, Bangalore, India)
Ramasubbareddy Somula (Information Technology, VNRVJIET, Hyderabad, India)

International Journal of Intelligent Computing and Cybernetics

ISSN: 1756-378X

Article publication date: 18 February 2021

Issue publication date: 23 April 2021

103

Abstract

Purpose

Current industrial scenario is largely dependent on cloud computing paradigms. On-demand services provided by cloud data centre are paid as per use. Hence, it is very important to make use of the allocated resources to the maximum. The resource utilization is highly dependent on the allocation of resources to the incoming request. The allocation of requests is done with respect to the physical machines present in the datacenter. While allocating the tasks to these physical machines, it needs to be allocated in such a way that no physical machine is underutilized or over loaded. To make sure of this, optimal load balancing is very important.

Design/methodology/approach

The paper proposes an algorithm which makes use of the fitness functions and duopoly game theory to allocate the tasks to the physical machines which can handle the resource requirement of the incoming tasks. The major focus of the proposed work is to optimize the load balancing in a datacenter. When optimization happens, none of the physical machine is neither overloaded nor under-utilized, hence resulting in efficient utilization of the resources.

Findings

The performance of the proposed algorithm is compared with different existing load balancing algorithms such as round-robin load (RR) ant colony optimization (ACO), artificial bee colony (ABC) with respect to the selected parameters response time, virtual machine migrations, host shut down and energy consumption. All the four parameters gave a positive result when the algorithm is simulated.

Originality/value

The contribution of this paper is towards the domain of cloud load balancing. The paper is proposing a novel approach to optimize the cloud load balancing process. The results obtained show that response time, virtual machine migrations, host shut down and energy consumption are reduced in comparison to few of the existing algorithms selected for the study. The proposed algorithm based on the duopoly function and fitness function brings in an optimized performance compared to the four algorithms analysed.

Keywords

Citation

Resma, K., Sharvani, G. and Somula, R. (2021), "Optimization of cloud load balancing using fitness function and duopoly theory", International Journal of Intelligent Computing and Cybernetics, Vol. 14 No. 2, pp. 198-217. https://doi.org/10.1108/IJICC-11-2020-0176

Publisher

:

Emerald Publishing Limited

Copyright © 2021, Emerald Publishing Limited

Related articles