Search results

1 – 10 of over 12000
Article
Publication date: 2 October 2018

Jihe Wang, Dexin Zhang, GuoZhong Chen and Xiaowei Shao

The purpose of this paper is to propose a new fuel-balanced formation keeping reference trajectories planning method based on selecting the virtual reference center(VRC) in a…

Abstract

Purpose

The purpose of this paper is to propose a new fuel-balanced formation keeping reference trajectories planning method based on selecting the virtual reference center(VRC) in a fuel-balanced sense in terms of relative eccentricity and inclination vectors (E/I vectors).

Design/methodology/approach

By using the geometrical intuitive relative E/I vectors theory, the fuel-balanced VRC selection problem is reformulated as the geometrical problem to find the optimal point to equalize the distances between the VRC and the points determined by the relative E/I vectors of satellites in relative E/I vectors plane, which is solved by nonlinear programming method.

Findings

Numerical simulations demonstrate that the new proposed fuel-balanced formation keeping strategy is valid, and the new method achieves better fuel-balanced performance than the traditional method, which keeps formation with respect to geometrical formation center.

Research limitations/implications

The new fuel-balanced formation keeping reference trajectories planning method is valid for formation flying mission whose member satellite is in circular or near circular orbit in J2 perturbed orbit environment.

Practical implications

The new fuel-balanced formation keeping reference trajectories planning method can be used to solve formation flying keeping problem, which involves multiple satellites in the formation.

Originality/value

The fuel-balanced reference trajectories planning problem is reformulated as a geometrical problem, which can provide insightful way to understand the dynamic nature of the fuel-balanced reference trajectories planning issue.

Details

Aircraft Engineering and Aerospace Technology, vol. 90 no. 6
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 1 August 2003

Erwin Stein and Karin Wiechmann

First, a synopsis of the major changes of natural science, mathematics and philosophy within the 17th century shall highlight the birth of the new age of science and technology…

Abstract

First, a synopsis of the major changes of natural science, mathematics and philosophy within the 17th century shall highlight the birth of the new age of science and technology. Based on Fermat's principle of the shortest light‐way and Galilei's first attempt of an approximative solution of the so‐called Brachistochrone problem using a quarter of the circle, Johann Bernoulli published a competition for this problem in 1696, and six solutions were submitted by the most famous scientists of the time and published in 1697, even though the variational calculus was only published in 1744 by Euler for the first time. Especially the analytical solution of Jakob Bernoulli contains already the main idea of Euler's variational calculus, i.e. to vary only one function value at a time using a finite difference method and proceeding to the infinitesimal limit. Also Leibniz' geometric solution is very remarkable, realizing a direct discrete variational method geometrically which was invented numerically much later in the 19th century by Ritz and Galerkin and generalized to the finite element method by introducing test and trial functions in finite subspaces. A new finite element solution of the non‐linear Brachistochrone problem concludes the paper. It is important to recognize that besides the roots of variational calculus also the first formulations of conservation laws in mechanics and their applications originated in the 17th century.

Details

Engineering Computations, vol. 20 no. 5/6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 June 2003

Jaroslav Mackerle

This paper gives a bibliographical review of the finite element and boundary element parallel processing techniques from the theoretical and application points of view. Topics…

1205

Abstract

This paper gives a bibliographical review of the finite element and boundary element parallel processing techniques from the theoretical and application points of view. Topics include: theory – domain decomposition/partitioning, load balancing, parallel solvers/algorithms, parallel mesh generation, adaptive methods, and visualization/graphics; applications – structural mechanics problems, dynamic problems, material/geometrical non‐linear problems, contact problems, fracture mechanics, field problems, coupled problems, sensitivity and optimization, and other problems; hardware and software environments – hardware environments, programming techniques, and software development and presentations. The bibliography at the end of this paper contains 850 references to papers, conference proceedings and theses/dissertations dealing with presented subjects that were published between 1996 and 2002.

Details

Engineering Computations, vol. 20 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 August 2001

Jaroslav Mackerle

Gives a bibliographical review of the error estimates and adaptive finite element methods from the theoretical as well as the application point of view. The bibliography at the…

1667

Abstract

Gives a bibliographical review of the error estimates and adaptive finite element methods from the theoretical as well as the application point of view. The bibliography at the end contains 2,177 references to papers, conference proceedings and theses/dissertations dealing with the subjects that were published in 1990‐2000.

Details

Engineering Computations, vol. 18 no. 5/6
Type: Research Article
ISSN: 0264-4401

Keywords

Content available
Article
Publication date: 1 February 2022

Antonio Andre Novotny, Sebastian Miguel Giusti and Samuel Amstutz

291

Abstract

Details

Engineering Computations, vol. 39 no. 1
Type: Research Article
ISSN: 0264-4401

Article
Publication date: 1 February 1995

K.C. CHELLAMUTHU and NATHAN IDA

Two different ‘a posteriori’ error estimation techniques are proposed in this paper. The effectiveness of the error estimates in adaptive mesh refinement for 2D and 3D…

Abstract

Two different ‘a posteriori’ error estimation techniques are proposed in this paper. The effectiveness of the error estimates in adaptive mesh refinement for 2D and 3D electrostatic problems are also analyzed with numerical test results. The post‐processing method employs an improved solution to estimate the error, whereas the gradient of field method utilizes the gradient of the field solution for estimating the ‘a posterior’ error. The gradient of field method is computationally inexpensive, since it solves a local problem on a patch of elements. The error estimates are tested by solving a set of self‐adjoint boundary value problems in 2D and 3D using a hierarchical minimal tree based mesh refinement algorithm. The numerical test results and the performance evaluation establish the effectiveness of the proposed error estimates for adaptive mesh refinement.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 14 no. 2/3
Type: Research Article
ISSN: 0332-1649

Article
Publication date: 1 December 2002

S.L. Ho, Shiyou Yang, Peihong Ni and H.C. Wong

A new response surface model (RSM), the moving least squares (MLS) approximation, is proposed for reconstructing the objective/constraint functions for the design optimization of…

Abstract

A new response surface model (RSM), the moving least squares (MLS) approximation, is proposed for reconstructing the objective/constraint functions for the design optimization of electromagnetic devices. The reconstructed functions are then combined with the simulated annealing (SA) algorithm to develop a computationally efficient technique to obtain the global solutions. The new method has: the “intelligence” to arrange the sample points, i.e. intensify the sample points in regions where a local optimum is likely to exist; the flexibility in dealing with irregular sample points; the self‐adaptive ability to regulate the parameters of the MLS models. Detailed numerical examples are given to validate the proposed technique.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 21 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 8 May 2018

Mehmet Eren Uz, Pezhman Sharafi, Mahya Askarian, Weiqing Fu and Chunmei Zhang

The preliminary layout design of structures impacts upon the entire design process and, consequently, the total cost. The purpose of this paper is to select the most economical…

Abstract

Purpose

The preliminary layout design of structures impacts upon the entire design process and, consequently, the total cost. The purpose of this paper is to select the most economical layouts that satisfy structural and architectural requirements, while considering the reciprocal effects of cost factors and layout variables at the preliminary stages of design.

Design/methodology/approach

This paper presents an automated method for cost optimization of geometric layout design of multi-span reinforced concrete (RC) beams subjected to dynamic loading by using the charged system search (CSS) algorithm. First, a novel cost optimization approach for geometric layout problems is introduced, in which both cost parameters and dynamic responses are considered in the preliminary layout design of beams. The proposed structural optimization problem with constraints on the static and dynamic equilibrium, architectural dimensions and structural action effects is solved using the CSS algorithm.

Findings

The proposed CSS algorithm for solving the cost optimization problem can be easily used for optimizing the span lengths and is also capable of working with various cost functions. The presented examples show that the proposed algorithm using the new cost optimization function provides satisfactory results and can result in over 7 per cent cost saving.

Originality/value

This is an original paper proposing a novel methodology for preliminary layout design of concrete beams.

Details

Engineering Computations, vol. 35 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 5 June 2007

Ean Tat Ooi, Sellakkutti Rajendran and Joon Hock Yeo

This paper aims to present an extension of two recently published elements (which are based on Petrov‐Galerkin formulation) to geometric nonlinear (GNL) problems.

Abstract

Purpose

This paper aims to present an extension of two recently published elements (which are based on Petrov‐Galerkin formulation) to geometric nonlinear (GNL) problems.

Design/methodology/approach

Two different sets of shape functions, namely isoparametric and metric, suitably chosen to satisfy the necessary compatibility and completeness conditions, are used as test and trial functions, respectively. Total Lagrangian formulation is used for the implementation of the element.

Findings

In implementing the unsymmetric formulation for nonlinear problems, the deformation gradient tensor can be evaluated invariably using either isoparametric or metric shape functions. The developed elements are found to exhibit improved performance in the presence of mesh distortions.

Research limitations/implications

The numerical problems in this paper involve linear elastic materials.

Originality/value

Extension of US‐QUAD8 and US‐HEXA20 for GNL problems is new.

Details

Engineering Computations, vol. 24 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 February 1995

Guy Jumarie

The theory of possibility (Zadeh, Sugeno) and the theory of relative information (Jumarie) both aim to deal with the meaning of information, but their mathematical frameworks are…

218

Abstract

The theory of possibility (Zadeh, Sugeno) and the theory of relative information (Jumarie) both aim to deal with the meaning of information, but their mathematical frameworks are quite different. In the first approach, possibility is described either by fuzziness (Zadeh) or by generalized measures (Sugeno), and in the second, possibility is obtained as the result of observing probability via an observation process with informational invariance. Shows that a combination of (classical) information theory with generalized maximum likelihood via geometric programming exhibits a link between relative information, fuzziness and possibility. Some consequences are outlined.

Details

Kybernetes, vol. 24 no. 1
Type: Research Article
ISSN: 0368-492X

Keywords

1 – 10 of over 12000