Search results

1 – 10 of 218
Article
Publication date: 23 October 2023

Shu-Hao Chang

Defining and validating a map of related technologies is critical for managers, investors and inventors. Because of the increase in the applications of and demand for…

Abstract

Purpose

Defining and validating a map of related technologies is critical for managers, investors and inventors. Because of the increase in the applications of and demand for semiconductor lasers, analyzing the technological position of developers has become increasingly critical. Therefore, the purpose of this study is to adopt the technological position analysis to identify mainstream technologies and developments relevant to semiconductor lasers.

Design/methodology/approach

Correspondence analysis and k-means cluster analysis, which are data mining techniques, are used to reveal strategic groups of major competitors in the semiconductor laser market according to their Patent Cooperation Treaty (PCT) patent applications.

Findings

The results of this study reveal that PCT patent applications are generally obtained for masers, optical elements, semiconductor devices and methods for measuring and that technology developers have varying technological positions.

Originality/value

Through position analysis, this study identifies the technological focuses of different manufacturers to obtain information that can guide the allocation of research and development resources.

Details

International Journal of Innovation Science, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1757-2223

Keywords

Article
Publication date: 22 September 2023

Xinmin Peng, Lumin He, Shuai Ma and Martin Lockett

An alliance portfolio can help latecomer firms to acquire the necessary knowledge and resources to catch up with market leaders. However, how latecomer firms construct an alliance…

Abstract

Purpose

An alliance portfolio can help latecomer firms to acquire the necessary knowledge and resources to catch up with market leaders. However, how latecomer firms construct an alliance portfolio in terms of the nature of windows of opportunity has not been fully analyzed. This paper aims to explore how latecomer firms can build appropriate coalitions according to the nature of the window of opportunity to achieve technological catch-up in different catch-up phases.

Design/methodology/approach

Based on a longitudinal case study from 1984 to 2018 of Sunny Group, now a leading manufacturer of integrated optical components and products, this paper explores the process of technological catch-up of latecomer firms building different types of alliance portfolio in different windows of opportunity.

Findings

This paper finds that there is a sequence when latecomers build an alliance portfolio in the process of catch-up. When the uncertainty of opportunity increases, the governance mechanism of the alliance portfolio will change from contractual to equity-based. Also, latecomer firms build market-dominated and technology-dominated alliance portfolios to overcome their market and technology disadvantages, respectively.

Originality/value

These conclusions not only enrich the theory of latecomer catch-up from the perspective of windows of opportunity but also expand research on alliance portfolio processes from a temporal perspective.

Details

Nankai Business Review International, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-8749

Keywords

Article
Publication date: 13 December 2023

Helmi Hentati and Neila Boulila

This study aims to develop a maturity model designed for assessing the current state of digitization in accounting firms.

Abstract

Purpose

This study aims to develop a maturity model designed for assessing the current state of digitization in accounting firms.

Design/methodology/approach

The authors have developed this index where the maturity levels are defined from the life cycle theory. For the items of a maturity measure, the authors have adopted a multimethodological approach. That approach allows to identify 27 measurement items to cover the three dimensions of audit, reporting and taxation.

Findings

This research proposes a diagnostic tool specific to accounting firms. The authors have tested this index in the Tunisian context. The results show that there are two types of accounting firms. This study found the first firm in the embryonic phase and the other in the growth phase. This points out the active role of Tunisian accounting firms in technology integration.

Research limitations/implications

This study highlights the integration of technology in the accounting field. Specifically, it aims to address technology management in accounting firms by measuring the degree of digitization of accounting firms. This research projects the use of information technologies (artificial intelligence, cloud, big data, etc.) in auditing, reporting and taxation.

Practical implications

On a practical level, this research provides an organizational diagnostic tool to assess the status of their accounting firms in terms of digitization. This will motivate practitioners to make frequent assessments, thus contributing to continuous improvement toward digitization.

Originality/value

The theoretical foundation of this research is based on the theory of the life cycle of technologies. This study is using this theory to identify and describe the current phase of the organization. And that is by indicating the overall scores on the technological capabilities of the accounting firms.

Details

Journal of Accounting & Organizational Change, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1832-5912

Keywords

Article
Publication date: 10 July 2023

Md. Mehrab Hossain, Shakil Ahmed, S.M. Asif Anam, Irmatova Aziza Baxramovna, Tamanna Islam Meem, Md. Habibur Rahman Sobuz and Iffat Haq

Construction safety is a crucial aspect that has far-reaching impacts on economic development. But safety monitoring is often reliant on labor-based observations, which can be…

Abstract

Purpose

Construction safety is a crucial aspect that has far-reaching impacts on economic development. But safety monitoring is often reliant on labor-based observations, which can be prone to errors and result in numerous fatalities annually. This study aims to address this issue by proposing a cloud-building information modeling (BIM)-based framework to provide real-time safety monitoring on construction sites to enhance safety practices and reduce fatalities.

Design/methodology/approach

This system integrates an automated safety tracking mobile app to detect hazardous locations on construction sites, a cloud-based BIM system for visualization of worker tracking on a virtual construction site and a Web interface to visualize and monitor site safety.

Findings

The study’s results indicate that implementing a comprehensive automated safety monitoring approach is feasible and suitable for general indoor construction site environments. Furthermore, the assessment of an advanced safety monitoring system has been successfully implemented, indicating its potential effectiveness in enhancing safety practices in construction sites.

Practical implications

By using this system, the construction industry can prevent accidents and fatalities, promote the adoption of new technologies and methods with minimal effort and cost and improve safety outcomes and productivity. This system can reduce workers’ compensation claims, insurance costs and legal penalties, benefiting all stakeholders involved.

Originality/value

To the best of the authors’ knowledge, this study represents the first attempt in Bangladesh to develop a mobile app-based technological solution aimed at reforming construction safety culture by using BIM technology. This has the potential to change the construction sector’s attitude toward accepting new technologies and cultures through its convenient choice of equipment.

Details

Construction Innovation , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1471-4175

Keywords

Open Access
Article
Publication date: 29 February 2024

Guanchen Liu, Dongdong Xu, Zifu Shen, Hongjie Xu and Liang Ding

As an advanced manufacturing method, additive manufacturing (AM) technology provides new possibilities for efficient production and design of parts. However, with the continuous…

Abstract

Purpose

As an advanced manufacturing method, additive manufacturing (AM) technology provides new possibilities for efficient production and design of parts. However, with the continuous expansion of the application of AM materials, subtractive processing has become one of the necessary steps to improve the accuracy and performance of parts. In this paper, the processing process of AM materials is discussed in depth, and the surface integrity problem caused by it is discussed.

Design/methodology/approach

Firstly, we listed and analyzed the characterization parameters of metal surface integrity and its influence on the performance of parts and then introduced the application of integrated processing of metal adding and subtracting materials and the influence of different processing forms on the surface integrity of parts. The surface of the trial-cut material is detected and analyzed, and the surface of the integrated processing of adding and subtracting materials is compared with that of the pure processing of reducing materials, so that the corresponding conclusions are obtained.

Findings

In this process, we also found some surface integrity problems, such as knife marks, residual stress and thermal effects. These problems may have a potential negative impact on the performance of the final parts. In processing, we can try to use other integrated processing technologies of adding and subtracting materials, try to combine various integrated processing technologies of adding and subtracting materials, or consider exploring more efficient AM technology to improve processing efficiency. We can also consider adopting production process optimization measures to reduce the processing cost of adding and subtracting materials.

Originality/value

With the gradual improvement of the requirements for the surface quality of parts in the production process and the in-depth implementation of sustainable manufacturing, the demand for integrated processing of metal addition and subtraction materials is likely to continue to grow in the future. By deeply understanding and studying the problems of material reduction and surface integrity of AM materials, we can better meet the challenges in the manufacturing process and improve the quality and performance of parts. This research is very important for promoting the development of manufacturing technology and achieving success in practical application.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Article
Publication date: 21 February 2024

Faguo Liu, Qian Zhang, Tao Yan, Bin Wang, Ying Gao, Jiaqi Hou and Feiniu Yuan

Light field images (LFIs) have gained popularity as a technology to increase the field of view (FoV) of plenoptic cameras since they can capture information about light rays with…

Abstract

Purpose

Light field images (LFIs) have gained popularity as a technology to increase the field of view (FoV) of plenoptic cameras since they can capture information about light rays with a large FoV. Wide FoV causes light field (LF) data to increase rapidly, which restricts the use of LF imaging in image processing, visual analysis and user interface. Effective LFI coding methods become of paramount importance. This paper aims to eliminate more redundancy by exploring sparsity and correlation in the angular domain of LFIs, as well as mitigate the loss of perceptual quality of LFIs caused by encoding.

Design/methodology/approach

This work proposes a new efficient LF coding framework. On the coding side, a new sampling scheme and a hierarchical prediction structure are used to eliminate redundancy in the LFI's angular and spatial domains. At the decoding side, high-quality dense LF is reconstructed using a view synthesis method based on the residual channel attention network (RCAN).

Findings

In three different LF datasets, our proposed coding framework not only reduces the transmitted bit rate but also maintains a higher view quality than the current more advanced methods.

Originality/value

(1) A new sampling scheme is designed to synthesize high-quality LFIs while better ensuring LF angular domain sparsity. (2) To further eliminate redundancy in the spatial domain, new ranking schemes and hierarchical prediction structures are designed. (3) A synthetic network based on RCAN and a novel loss function is designed to mitigate the perceptual quality loss due to the coding process.

Details

Data Technologies and Applications, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2514-9288

Keywords

Article
Publication date: 6 July 2023

Iqra Masroor and Jamshed Aslam Ansari

Compact and wideband antennas are the need of modern wireless systems that preferably work with compact, low-profile and easy-to-install devices that provide a wider coverage of…

Abstract

Purpose

Compact and wideband antennas are the need of modern wireless systems that preferably work with compact, low-profile and easy-to-install devices that provide a wider coverage of operating frequencies. The purpose of this paper is to propose a novel compact and ultrawideband (UWB) microstrip patch antenna intended for high frequency wireless applications.

Design/methodology/approach

A square microstrip patch antenna was initially modeled on finite element method-based electromagnetic simulation tool high frequency structure simulator. It was then loaded with a rectangular slit and Koch snowflake-shaped fractal notches for bandwidth enhancement. The fabricated prototype was tested by using vector network analyzer from Agilent Technologies, N5247A, Santa Clara, California, United States (US).

Findings

The designed Koch fractal patch antenna is highly compact with dimensions of 10 × 10 mm only and possesses UWB characteristics with multiple resonances in the operating band. The −10 dB measured impedance bandwidth was observed to be approximately 13.65 GHz in the frequency range (23.20–36.85 GHz).

Originality/value

Owing to its simple and compact structure, positive and substantial gain values, high radiation efficiency and stable radiation patterns throughout the frequency band of interest, the proposed antenna is a suitable candidate for high frequency wireless applications in the K (18–27 GHz) and Ka (26.5–40 GHz) microwave bands.

Details

Microelectronics International, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 13 June 2023

Atul Varshney, Vipul Sharma, T. Mary Neebha and N. Prasanthi Kumari

This paper aims to present a low-cost, edge-fed, windmill-shaped, notch-band eliminator, circular monopole antenna which is practically loaded with a complementary split ring…

Abstract

Purpose

This paper aims to present a low-cost, edge-fed, windmill-shaped, notch-band eliminator, circular monopole antenna which is practically loaded with a complementary split ring resonator (CSRR) in the middle of the radiating conductor and also uses a partial ground to obtain wide-band performance.

Design/methodology/approach

To compensate for the reduced value of gain and reflection coefficient because of the full (complete) ground plane at the bottom of the substrate, the antenna is further loaded with a partial ground and a CSRR. The reduction in the length of ground near the feed line improves the impedance bandwidth, and introduced CSRR results in improved gain with an additional resonance spike. This results in a peak gain 3.895dBi at the designed frequency 2.45 GHz. The extending of three arms in the circular patch not only led to an increase of peak gain by 4.044dBi but also eliminated the notch band and improved the fractional bandwidth 1.65–2.92 GHz.

Findings

The work reports a –10dB bandwidth from 1.63 GHz to 2.91 GHz, which covers traditional coverage applications and new specific uses applications such as narrow LTE bands for future internet of things (NB-IoT) machine-to-machine communications 1.8/1.9/2.1/2.3/2.5/2.6 GHz, industry, automation and business-critical cases (2.1/2.3/2.6 GHz), industrial, society and medical applications such as Wi-MAX (3.5 GHz), Wi-Fi3 (2.45 GHz), GSM (1.9 GHz), public safety band, Bluetooth (2.40–2.485 GHz), Zigbee (2.40–2.48Ghz), industrial scientific medical (ISM) band (2.4–2.5 GHz), WCDMA (1.9, 2.1 GHz), 3 G (2.1 GHz), 4 G LTE (2.1–2.5 GHz) and other personal communication services applications. The estimated RLC electrical equivalent circuit is also presented at the end.

Practical implications

Because of full coverage of Bluetooth, Zigbee, WiFi3 and ISM band, the proposed fabricated antenna is suitable for low power, low data rate and wireless/wired short-range IoT-enabled medical applications.

Originality/value

The antenna is fabricated on a piece (66.4 mm × 66.4 mm × 1.6 mm) of low-cost low profile FR-4 epoxy substrate (0.54 λg × 0.54 λg) with a dielectric constant of 4.4, a loss tangent of 0.02 and a thickness of 1.6 mm. The antenna reflection coefficient, impedance and VSWR are tested on the Keysight technology (N9917A) vector network analyzer, and the radiation pattern is measured in an anechoic chamber.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 12 October 2023

Sasireka Perumalsamy, Kavya G. and Rajkumar S.

This paper aims to propose a two-element dual fed ultra-wideband (UWB) multiple input multiple output (MIMO) antenna system with no additional decoupling structures. The antenna…

Abstract

Purpose

This paper aims to propose a two-element dual fed ultra-wideband (UWB) multiple input multiple output (MIMO) antenna system with no additional decoupling structures. The antenna operates from 3.1 to 10.6 GHz. The antenna finds its usage in on-body wearable device applications.

Design/methodology/approach

The antenna system measures 63.80 × 29.80 × 0.7 mm. The antenna radiating element is designed by using a modified dumbbell-shaped structure. Jean cloth material is used as substrate. The isolation improvement is achieved through spacing between two elements.

Findings

The proposed antenna has a very low mutual coupling of S21 < −20 dB and impedance matching of S11 < −10 dB. The radiation characteristics are stable in the antenna operating region. It provides as ECC < 0.01, diversity gain >9.9 dB. The antenna offers low average specific absorption rate (SAR) of 0.169 W/kg. The simulated and measured results are found to be in reasonable match.

Originality/value

The MIMO antenna is proposed for on-body communication, hence, a very thin jean cloth material is used as substrate. This negates the necessity of additional material usage in antenna design and the result range indicates good diversity performance and with a low SAR of 0.169 W/kg for on-body performance. This makes it a suitable candidate for textile antenna application.

Details

Microelectronics International, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 28 November 2023

Serap Kiriş and Muharrem Karaaslan

The purpose of this study is to design a radio altimeter antenna whose production process is facilitated and can work with multiple-input multiple-output (MIMO) properties to…

Abstract

Purpose

The purpose of this study is to design a radio altimeter antenna whose production process is facilitated and can work with multiple-input multiple-output (MIMO) properties to provide space gain on the aircraft.

Design/methodology/approach

To create an easy-to-produce MIMO, a two-storied structure consisting of a reflector and a top antenna was designed. The dimensions of the reflector were prevented to get smaller to supply easy production. The unit cell nearly with the same dimensions of a lower frequency was protected through the original cell design. The co-planar structure with the use of a via connection was modified and a structure was achieved with no need to via for easy production, too. Finally, the antennas were placed side by side and the distance between them was optimized to achieve a MIMO operation.

Findings

As a result, an easy-to-produce, compact and successful radio altimeter antenna was obtained with high antenna parameters such as 10.14 dBi gain and 10.55 dBi directivity, and the conical pattern along with proper MIMO features, through original reflector surface and top antenna system.

Originality/value

Since radio altimeter antennas require high radiation properties, the microstrip antenna structure is generally used in literature. This paper contributes by presenting the radio altimeter application with antenna-reflective structure participation. The technical solutions were developed during the design, focusing on an easy manufacturing process for both the reflective surface and the upper antenna. Also, the combination of International Telecommunication Union’s recommended features that require high antenna properties was achieved, which is challenging to reach. In addition, by operating the antenna as a successful MIMO, two goals of easy production and space gain on aircraft have been attained at the same time.

Details

Aircraft Engineering and Aerospace Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1748-8842

Keywords

Access

Year

Last 12 months (218)

Content type

Earlycite article (218)
1 – 10 of 218