Search results

1 – 10 of over 13000
Article
Publication date: 7 May 2021

Lili Wang, Mengxue He, Min Wang and Yuliang Wei

Under the influence of loading, manufacturing, installation and other factors, the axis of sleeve bearing and journal will not be aligned, which will have a great impact on…

Abstract

Purpose

Under the influence of loading, manufacturing, installation and other factors, the axis of sleeve bearing and journal will not be aligned, which will have a great impact on running stability and life of bearing. The existence of oil groove can effectively improve the life of sleeve bearing and working efficiency. The lubrication performance of two and three grooves sleeve bearing considering journal misalignment is analyzed.

Design/methodology/approach

To solve the difference of discontinuous position of oil film thickness, it is necessary to use the flow balance relationship in the finite control space, and oil film thickness equation of multi-groove sleeve bearing considering journal misalignment is gained.

Findings

The friction and bearing capacity of journal bearing with oil groove increase with the increase of journal inclination angle. At the same journal inclination angle, the bearing capacity of two-axial groove journal bearing is larger than that of three-axial groove journal bearing, but the friction of two-axial groove journal bearing shows the trend of the first bigger and then smaller than that of three-axial groove journal bearing.

Originality/value

The research has great significance to optimize bearing lubrication performance and increase bearing working life.

Details

Industrial Lubrication and Tribology, vol. 73 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 11 April 2016

Zhenpeng He and Wenqin Gong

This paper aims to give the guidance for the design of the bearing.

Abstract

Purpose

This paper aims to give the guidance for the design of the bearing.

Design/methodology/approach

The finite element method, the multi-body dynamics method, the finite difference method and the tribology are combined to analyze the lubrication.

Findings

The performance parameters of crankshaft-bearing system such as the misalignment, the oil filling ratio and the oil groove are also investigated. Misalignment causes the pressure to incline on one side and the pressure increases obviously. Filling ratio has great relationship with pressure distribution; the factors influencing the filling ratio are also analyzed. Different oil groove models are investigated, as it can provide the theory for oil groove design, and three factors above are always combined to influence the lubrication characteristics.

Originality/value

The optimization of bearing system is conducted by orthogonal test and neural network, unlike the linear optimization theory. Neural network uses the nonlinear theory to optimize crankshaft-bearing system.

Details

Industrial Lubrication and Tribology, vol. 68 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 March 2013

Xiaoyong Zhao, Jun Sun, Chunmei Wang, Hu Wang and Mei Deng

Current lubrication analyses of misaligned journal bearings are generally performed under some given preconditions. The purpose of this paper is to calculate the lubrication…

Abstract

Purpose

Current lubrication analyses of misaligned journal bearings are generally performed under some given preconditions. The purpose of this paper is to calculate the lubrication characteristics of a journal bearing with journal misalignment caused by shaft deformation under load, considering the surface roughness, thermal effect and (thermal and elastic) deformation of bearing surface simultaneously.

Design/methodology/approach

The lubrication of bearing was analyzed by average flow model based generalized Reynolds equation. The deformation of bearing surface under pressure or heat of oil film was calculated by compliance matrix method. The compliance matrix was established by finite element analysis. The temperature distributions of oil film and bearing were calculated by energy equation and heat conduction equation.

Findings

When the thermal deformation of bearing and journal surface is considered, the radius clearance affects not only the value of the maximum oil film pressure and minimum oil film thickness, but also the distribution of oil film pressure and thickness of misaligned bearing. The effect of thermal deformation of bearing on the performance of misaligned bearing is larger than that of elastic deformation of bearing. Whether or not the surface roughness affects the performance of misaligned bearing and the affecting level depends greatly on the condition of deformation of bearing surface.

Originality/value

The surface roughness, thermal effect and (thermal and elastic) deformation of bearing surface were considered simultaneously in the thermoelastohydrodynamic lubrication analysis of bearing with journal misalignment caused by shaft deformation under load. The results of this paper are helpful to the design of the bearing.

Details

Industrial Lubrication and Tribology, vol. 65 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 8 January 2018

Mo Jintao, Gu Chaohua, Pan Xiaohong, Zheng Shuiying and Ying Guangyao

For moderate pressure and high pressure gear pumps, the temperature failure problem of bearings is now of considerable concern because of their heavy loads. However, the compact…

124

Abstract

Purpose

For moderate pressure and high pressure gear pumps, the temperature failure problem of bearings is now of considerable concern because of their heavy loads. However, the compact structure and the efficiency consideration make it extremely difficult to improve the bearing cooling. A self-circulating oil bearing system is developed for gear pumps with self-lubricating bearings to solve this problem. The oil is aspirated in from the low pressure chamber of the gear pump and discharged to the same chamber by using the pressure difference in the journal bearing, thus achieving the self-circulation.

Design/methodology/approach

An experiment test rig has been built for the feasibility study. The oil flow rate under different speeds has been recorded. Furthermore, the temperatures of the bearings with or without the oil circulation have been compared. Additionally, the oil flow in the test rig has been simulated using computational fluid dynamics codes.

Findings

The experimental and numerical results agree well. The experimental results indicate that the oil flow rate increases approximately linearly with the speed and the bearing temperature can be lowered successfully. The calculation results indicate that the bearing load capacity is nearly the same. Both the experimental and numerical studies establish that the self-circulating oil bearing system works successfully.

Originality value

As far as the authors know, it is the first time to find that the self-circulation can be built using the pressure difference in the bearing oil film, and this principle can be applied in the cooling and lubrication of the gear pumps to solve the temperature failure problem.

Details

Industrial Lubrication and Tribology, vol. 70 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 11 April 2016

Amit Singla and Amit Chauhan

The current trend of modern industry is to use machineries which rotate at high speed along with the capability of carrying heavy rotor loads. This paper aims at static thermal…

Abstract

Purpose

The current trend of modern industry is to use machineries which rotate at high speed along with the capability of carrying heavy rotor loads. This paper aims at static thermal analysis of two different profiles of non-circular journal bearings – a true elliptical bearing and orthogonal bearing.

Design/methodology/approach

The Reynolds equation has been solved through finite difference method to compute the oil film pressure. Parabolic temperature profile approximation technique has been used to solve the energy equation and thus used for computation of various bearing performance characteristics such as thermo-hydrodynamic oil film pressure, temperature, load capacity, Sommerfeld number and power loss characteristics across the bearing. The effect of ellipticity ratio on the bearing performance characteristics has also been obtained for both the elliptical and vertical offset bearing using three different commercially available grades of oil (Hydrol 32, 68 and 100).

Findings

It has been observed that the thermo-hydrodynamic pressure and temperature rise of the oil film is less in orthogonal bearing as compared to the true elliptical bearing for same operating conditions. The effect of ellipticity ratio of non-circularity on bearing performance parameters have been observed to be less in case of elliptical bearing as compared to orthogonal bearing. It has been concluded that though the rise in oil film temperature is high for true elliptical bearing, but still it should be preferred over orthogonal profile under study, as it has comparably good load-carrying capacity.

Originality/value

The performance parametric analysis will help the designers to select such kind of non-circular journal bearing for various applications.

Details

Industrial Lubrication and Tribology, vol. 68 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 13 November 2017

Jun Zha, Yaolong Chen and Penghai Zhang

The form error of shaft and hole parts is inevitable because of the machining error caused by rotation error of tool axis in machine tools where the elliptical form error is the…

Abstract

Purpose

The form error of shaft and hole parts is inevitable because of the machining error caused by rotation error of tool axis in machine tools where the elliptical form error is the most common in shaft and bearing bush. The purpose of this paper is to present the relationship between the elliptical form error and rotation accuracy for hydrostatic journal bearing in precision spindle and rotation table.

Design/methodology/approach

An error averaging effect model of hydrostatic journal bearing is established by using Reynolds equation, pressure boundary conditions, flux continuity equation of the land and kinetic equation of shaft in hydrostatic journal bearing. The effects of shaft and bearing bush on rotation accuracy were analyzed quantitatively.

Findings

The results reveal that the effect of shaft elliptical form error on rotation accuracy was six times larger than bearing bush. Therefore, to improve the rotation accuracy of hydrostatic journal bearing in spindle or rotation table, the machining error of shaft should be controlled carefully.

Originality/value

An error averaging model is proposed to evaluate the effect of an elliptical form error on rotation accuracy of hydrostatic journal bearings, which solves the Reynolds equation, the flux continuity equation and the kinetic equation. The determination of form error parameters of shaft and bearing bush can be yielded from finding results of this study for precision design of hydrostatic journal bearings.

Details

Industrial Lubrication and Tribology, vol. 69 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 8 February 2016

Xingxin Liang, Zhenglin Liu, Huanjie Wang, Xuhui Zhou and Xincong Zhou

The purpose of this study is to investigate the effects of partial texture location and dimple depth on load carrying capacity (LCC), friction coefficient and circumferential flow…

Abstract

Purpose

The purpose of this study is to investigate the effects of partial texture location and dimple depth on load carrying capacity (LCC), friction coefficient and circumferential flow of journal bearing.

Design/methodology/approach

Based on the Navier-Stokes equation, the methodology used computational fluid dynamics (CFD). A phase change boundary condition was applied on fluid domain, and the negative pressure at divergent region of oil film was considered.

Findings

It has been found that texture located at lubricant inlet area can improve the performance of the bearing, and the effect of shallow dimples is superior to the deep ones. However, the bearing performance will be reduced due to the texture located at the maximum pressure area. When texture is located at the lubricant outlet area, there will be two different situations: the part of the texture located within the oil film divergent area can improve the LCC, while the part that is beyond the divergent region will make the LCC decrease.

Originality/value

The lower-half oil film model was established only in this study to analyze the hydrodynamic lubrication performance of partial textured journal bearing, and the lower-half oil film was divided into three parts. A new cavitation algorithm was introduced to deal with the negative pressure. The formula for calculating the friction of liquid film is refined, including the consideration of vapor phase. The simulation results show that the location of partial texture have a great influence on the bearing performance.

Details

Industrial Lubrication and Tribology, vol. 68 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 12 September 2016

Amit Singla and Amit Chauhan

The non-circular journal bearings may be used over circular journal bearings because of their superior thermal stability. The paper aims at experimental study of thermal…

Abstract

Purpose

The non-circular journal bearings may be used over circular journal bearings because of their superior thermal stability. The paper aims at experimental study of thermal performance of two different true elliptical and orthogonally displaced non-circular journal bearing profiles.

Design/methodology/approach

The experiments have been conducted on a specially designed test rig which simultaneously evaluates oil film pressure and temperature along the circumference of non-circular journal bearing. The tests are conducted for the designed true elliptical and orthogonally displaced journal bearing at three different rotational speeds of 2,000, 3,000 and 4,000 rpm under the influence of steadily applied load varied from 0.5 to 2.0 kN. The data collected during experimentation have been used to evaluate thermal performance parameters such as maximum pressure, flow rate and effective temperature of the bearings under study.

Findings

It has been observed experimentally that two lobes of pressure and temperature have been obtained for both the elliptical and orthogonally displaced journal bearing. The negative pressure zone (cavitation area) has been observed to be reduced along the circumference for both the journal bearings which results in less thermal degradation of an oil as compared to circular journal bearing. The oil film pressure and temperature increases with the increase in radial load of both the bearings. The maximum temperature rise of oil film is more in case of elliptical bearing as compared to the orthogonally displaced bearing.

Originality/value

The experimental data presented in this paper will help the designers to select such kind of non-circular journal bearing for various applications. The designed bearings have resulted in reduced cavitation zone and two positive pressure lobes have been observed which may result in application of such bearings as an alternate for circular journal bearing.

Details

Industrial Lubrication and Tribology, vol. 68 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 8 January 2018

Yu Chen, Yu Sun and Chunping Cao

The purpose of this study is to investigate the hydrodynamic characteristics of journal bearings in a high-speed and heavy-load press system by considering thermal influence and…

242

Abstract

Purpose

The purpose of this study is to investigate the hydrodynamic characteristics of journal bearings in a high-speed and heavy-load press system by considering thermal influence and cavitation.

Design/methodology/approach

A proper and effectual computational method is presented for steady-state analysis of fluid interaction in a rotor-bearing press system by combining computational fluid dynamics techniques.

Findings

The influences of eccentricity ratio, rotational speed and oil-film thickness on the hydrodynamic behavior of the journal bearing are studied.

Originality/value

The computational method can be used for creating a precise lubrication design for a journal bearing of a lubrication system.

Details

Industrial Lubrication and Tribology, vol. 70 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 January 1986

T.W. Bates

A brief review of the conditions to which a crankcase oil is subjected during engine operation is given prior to a consideration of the relevance of the current SAE J300 viscosity…

Abstract

A brief review of the conditions to which a crankcase oil is subjected during engine operation is given prior to a consideration of the relevance of the current SAE J300 viscosity classification to the needs of today's engines. Regarding the high‐temperature part, it is concluded that the current classification based on the low‐shear‐rate kinematic viscosity at 100°C provides a useful guide to oil consumption and a convenient means of evaluating used oils; it is, however, unsatisfactory as a guide to the fuel consumption and journalbearing performance of polymer‐containing oils. Whilst modification of J300 to include high‐shear‐rate viscosity limits could provide a classification relevant to the fuel consumption of such oils, knowledge of the complicated effects of both elasticity and viscosity on load‐bearing capacity, although increasing, is currently incomplete and it will be some years yet before J300 could be usefully modified to provide a guide to the rheological performance of oils in automotive journal bearings.

Details

Industrial Lubrication and Tribology, vol. 38 no. 1
Type: Research Article
ISSN: 0036-8792

1 – 10 of over 13000