Search results

1 – 10 of over 1000
Article
Publication date: 1 March 2013

Xiaoyong Zhao, Jun Sun, Chunmei Wang, Hu Wang and Mei Deng

Current lubrication analyses of misaligned journal bearings are generally performed under some given preconditions. The purpose of this paper is to calculate the lubrication…

Abstract

Purpose

Current lubrication analyses of misaligned journal bearings are generally performed under some given preconditions. The purpose of this paper is to calculate the lubrication characteristics of a journal bearing with journal misalignment caused by shaft deformation under load, considering the surface roughness, thermal effect and (thermal and elastic) deformation of bearing surface simultaneously.

Design/methodology/approach

The lubrication of bearing was analyzed by average flow model based generalized Reynolds equation. The deformation of bearing surface under pressure or heat of oil film was calculated by compliance matrix method. The compliance matrix was established by finite element analysis. The temperature distributions of oil film and bearing were calculated by energy equation and heat conduction equation.

Findings

When the thermal deformation of bearing and journal surface is considered, the radius clearance affects not only the value of the maximum oil film pressure and minimum oil film thickness, but also the distribution of oil film pressure and thickness of misaligned bearing. The effect of thermal deformation of bearing on the performance of misaligned bearing is larger than that of elastic deformation of bearing. Whether or not the surface roughness affects the performance of misaligned bearing and the affecting level depends greatly on the condition of deformation of bearing surface.

Originality/value

The surface roughness, thermal effect and (thermal and elastic) deformation of bearing surface were considered simultaneously in the thermoelastohydrodynamic lubrication analysis of bearing with journal misalignment caused by shaft deformation under load. The results of this paper are helpful to the design of the bearing.

Details

Industrial Lubrication and Tribology, vol. 65 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 10 October 2008

Bing Shi and Ye Jin

This paper aims to develop an assembly behaviour dynamic model of reheat stop valve assembly under run‐time situations and combined (assembly error, friction, fluid dynamics and…

Abstract

Purpose

This paper aims to develop an assembly behaviour dynamic model of reheat stop valve assembly under run‐time situations and combined (assembly error, friction, fluid dynamics and thermal load behaviour) and to carry out assembly process evaluation and optimisation.

Design/methodology/approach

The fluid dynamic behaviour analysis is carried out for the dynamic torque characteristics of reheat stop valve and for the thermal load distribution of the valve shaft‐bush subassembly, which is used for evaluating the thermal deformation of valve shaft by using of finite elements method. The assembly behaviour dynamic model is developed by multibody dynamics theory, which is as the basis of developing virtual prototyping platform for analysing and evaluating the current assembly process.

Findings

It is revealed that the deformation (ε) of valve shaft due to the thermal load, and the assembly coaxial error (e) can change the motion clearance remarkably, which lead the dynamic properties and performance of reheat stop valve changed greatly. The current assembly behaviour variable are not optimum and the initial design clearance between valve shaft and bush 4# can be optimised by the developed virtual prototyping platform on the basis of ADAMS® API. The results of evaluation for the assembly behaviour reveal the well dynamic characteristics of reheat stop valve with the optimum assembly behaviour variable. This will be useful for improving the current assembly process of reheat stop valve.

Research limitations/implications

The present assembly behaviour dynamic model based on virtual prototyping for optimum assembly process design uses only single objective optimisation (the most important clearance between valve shaft and bush 4#). For a complete optimum assembly process design has to be carried out with other three clearance variables (the clearance between valve shaft and bush 1#, bush 2# and bush 3#) together.

Practical implications

The present analysis provides some benchmarks for improving the current assembly process. In practice, the assembly coaxial tolerance of valve shaft‐bush subassembly and the initial design clearances must be limited strictly.

Originality/value

This paper provides a methodology for analysis and evaluation of reheat stop valve assembly behaviour with the consideration of combined environmental behaviours. Based on this methodology, it is possible to develop an assembly behaviour dynamic model, and further, to develop a virtual prototyping platform for analysing and evaluating the assembly process which will offer help to designers for improving the reheat stop valve assembly process.

Details

Engineering Computations, vol. 25 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 16 November 2023

Shuai Yang, Junxing Hou, Xiaodong An and Shuanghui Xi

The floating ring generates elastic deformation as the film pressure for high-speed floating ring bearings (FRBs). The purpose of this study is to investigate the influence of…

Abstract

Purpose

The floating ring generates elastic deformation as the film pressure for high-speed floating ring bearings (FRBs). The purpose of this study is to investigate the influence of ring elastic deformation on the performance of a hydrodynamic/hydrostatic FRB, including floating ring equilibrium and minimum film thickness.

Design/methodology/approach

The finite element method and finite difference method are used to solve thermohydrodynamic (THD) lubrication models, including the Reynolds equation, energy equation and temperature–viscosity equation. The deformation matrix method is applied to solve the elastic deformation equation, and then the deformation distribution, floating ring equilibrium and minimum film thickness are investigated. The maximum pressure is compared with the published article to verify the mathematical models.

Findings

The deformation value increases with the growth of shaft speed; owing to elastic deformation on the film reaction force and friction moment, the ring achieves equilibrium at a new position, and the inner eccentricity increases while the ring-shaft speed ratio declines. The minimum film thickness declines with the growth of inlet temperature, and the outer film tends to rupture considering elastic deformation at a higher temperature.

Originality/value

The floating ring elastic deformation is coupled with the THD lubrication equations to study ring deformation on the hydrodynamic/hydrostatic FRB lubrication mechanism. The elastic deformation of floating ring should be considered to improve analysis accuracy for FRBs.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-05-2023-0139/

Details

Industrial Lubrication and Tribology, vol. 75 no. 10
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 28 April 2020

Robert Goraj

This paper aims to present airworthiness considerations regarding a shaft of an electric motor. A fatigue lifetime prediction analysis based on one-step load spectrum is performed…

Abstract

Purpose

This paper aims to present airworthiness considerations regarding a shaft of an electric motor. A fatigue lifetime prediction analysis based on one-step load spectrum is performed during high-cycle fatigue. Time-dependent normal and shear stress components are estimated using a high-fidelity digital twin built in Siemens PLM Nx Nastran as a finite element model (FEM). Linear and centrifugal acceleration as well as gyroscopic moment, motor torque, propeller thrust and thermal loads are considered. The equivalent cyclic degree of utilisation and a safety margin against the slip of a press-fitted shaft to rotor hub connection is estimated.

Design/methodology/approach

A load analysis using FEM is presented. The numerically obtained results are verified on an analytical and a semi-empirical basis.

Findings

The shaft of the electric motor can sustain 74 h of operation if burdened with aerobatic loads. Its load capacity equals 48% for the overall safety factor of 2.25.

Practical implications

The paper presents a specific, easily identifiable advance in knowledge that can be applicable in safety flight analysis issues.

Originality/value

The work presents a rotor of a novel lightweight electric motor for aircraft applications, which is a successor of the electric motor set recently in Extra 330E. The work delivers a computational estimation of the shaft life.

Details

Aircraft Engineering and Aerospace Technology, vol. 92 no. 9
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 4 July 2023

Minghui Yang, Hong Lu, Xinbao Zhang, Yong Quan Zhang, Zhang Jie Li and Wei Zhang

This study aims to investigate mixed lubrication performances of stern bearing in a misaligned state considering turbulence and bearing deformation impacts.

Abstract

Purpose

This study aims to investigate mixed lubrication performances of stern bearing in a misaligned state considering turbulence and bearing deformation impacts.

Design/methodology/approach

A mixed lubrication model of stern bearing is established. The generalized average Reynolds equation governing the turbulent flow of lubricant is analyzed by considering the interaction of bearing elastic deformation, asperity contact pressure and film pressure. The bearing behaviors including minimum film thickness, hydrodynamic pressure, asperity friction force and frictional coefficient are studied under different models. The correctness of this model is verified by comparing it with that of the published data.

Findings

Numerical results indicate that elastic deformation noticeably decreases the maximum film pressure, the asperity contact force and the friction coefficient in the mixed lubrication stage. The effect of elastic deformation and turbulence reduces the transition speed from mixed to liquid lubrication.

Originality/value

This model includes both turbulence and bearing deformation impacts on journal bearing performances. It is expected that the numerical results can provide useful information to establish a stern bearing exposed to mixed lubrication conditions.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-11-2022-0352/

Details

Industrial Lubrication and Tribology, vol. 75 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 8 April 2014

Jun Sun, Xinlong Zhu, Liang Zhang, Xianyi Wang, Chunmei Wang, Hu Wang and Xiaoyong Zhao

Current lubrication analyses of misaligned journal bearings were generally performed under some given preconditions. To make the lubrication analysis closer to the actual…

Abstract

Purpose

Current lubrication analyses of misaligned journal bearings were generally performed under some given preconditions. To make the lubrication analysis closer to the actual situation and usable to the journal bearing design, the purpose of this paper was to calculate the lubrication characteristics of misaligned journal bearings considering the viscosity-pressure effect of the oil, the surface roughness and the elastic deformation of the journal bearing at the same time.

Design/methodology/approach

The lubrication of bearings was analyzed using the average Reynolds equation. The deformation of the bearing surface under oil film pressure was calculated by a compliance matrix method. The compliance matrix was established by finite element analysis of the bearing housing. The viscosity-pressure and viscosity–temperature equations were used in the analysis.

Findings

The oil viscosity-pressure relationship has a significant effect on the lubrication of misaligned journal bearings. The surface roughness will affect the lubrication of misaligned journal bearings when the eccentricity ratio and angle of journal misalignment are all large. The directional parameter of the surface has an obvious effect on the lubrication of misaligned journal bearings. The deformation of the bearing surface has a remarkable effect on the lubrication of misaligned journal bearings.

Originality/value

The lubrication characteristics of misaligned journal bearings were calculated considering the viscosity-pressure effect of the oil, the surface roughness and the elastic deformation of the journal bearing at the same time. The results of this paper are helpful to the design of the bearing.

Details

Industrial Lubrication and Tribology, vol. 66 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 26 November 2018

Fangrui Lv, Chunxiao Jiao, Donglin Zou, Na Ta and Zhu-shi Rao

The purpose of this paper is to analyze the lubrication behavior of misaligned water-lubricated polymer bearings with axial grooves.

Abstract

Purpose

The purpose of this paper is to analyze the lubrication behavior of misaligned water-lubricated polymer bearings with axial grooves.

Design/methodology/approach

A lubrication model considering journal misalignment, bush deformation and grooves is established. In dynamic analyses of shaft systems, bearings are usually simplified as supporting points. Thus, an approach for solving the equivalent supporting point location is presented. The influence of misalignment angle and groove number on film thickness, hydrodynamic pressure distribution, load-carrying capacity and ESP location is investigated.

Findings

As the misalignment angle increases, the location of the maximum pressure and ESP are shifted toward the down-warping end, and the load-carrying capacity of the bearing decreases. In comparison to the nine-groove bearing, the six grooves bearing has a higher load-carrying capacity and the ESP is located closer to the down-warping end for an equivalent misalignment angle.

Practical implications

The results of this study can be applied to marine propeller shaft systems and other systems with misaligned bearings.

Originality/value

A study on the lubrication behavior of misaligned water-lubricated polymer bearings with axial grooves is of significant interest to the research community.

Details

Industrial Lubrication and Tribology, vol. 71 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 17 June 2022

Biao Li, Jun Sun, Hu Wang and Xiao Zhang

Under the action of many factors, the shaft of the shaft-journal bearing system inevitably moves along the axis direction at work, which will lead to the axial movement of journal…

Abstract

Purpose

Under the action of many factors, the shaft of the shaft-journal bearing system inevitably moves along the axis direction at work, which will lead to the axial movement of journal in the bearing. However, at present, only the dynamic and squeezing effects caused by the relative rotation and squeezing motion between the journal and the bearing surfaces are considered in the lubrication analysis of misaligned journal bearing and the axial movement of journal in the actual use of bearing is not considered. The purpose of this paper is to analyze the lubrication of journal bearing considering the axial movement of journal.

Design/methodology/approach

Taking the shaft-journal bearing system as the research object, a hydrodynamic lubrication model of journal bearing is established considering the axial movement and misalignment of journal. The finite difference method is used to solve the Reynolds equation for the lubrication analysis.

Findings

The axial movement of journal has a significant influence on the lubrication characteristics of misaligned journal bearing. The larger the misalignment angles of journal or the eccentricity of bearing, the greater the influence of the axial movement of journal on the lubrication performance of bearing. The lower the speed of bearing or the smaller the clearance of bearing, the more significant the influence of the axial movement of journal on the lubrication performance of bearing is.

Originality/value

The influence of the axial movement of journal on the lubrication performance of journal bearing is studied under different misalignment angles of journal, working conditions and clearances of bearing. The results of this paper are helpful to the design and research of the lubrication performance of journal bearing.

Details

Industrial Lubrication and Tribology, vol. 74 no. 7
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 7 May 2019

Fangrui Lv, Donglin Zou, Na Ta and Zhu-Shi Rao

The purpose of this paper is to improve the lubrication performance of a water-lubricated polymer bearing with axial grooves, especially enlarge the minimum film thickness.

Abstract

Purpose

The purpose of this paper is to improve the lubrication performance of a water-lubricated polymer bearing with axial grooves, especially enlarge the minimum film thickness.

Design/methodology/approach

The bearing diameter is enlarged near the axial ends of the journal, with axial openings of a trumpet shape. A numerical model is developed which considers the proposed trumpet-shaped openings, bush deformation and grooves. The generatrix of the trumpet-shaped opening is assumed to be a paraboloid. Three different variations are covered, and the influences of the trumpet-shaped openings’ parameters on the bearing performance are analyzed.

Findings

The appropriate trumpet-shaped openings at the axial ends effectively increase the minimum film thickness, and the impact of trumpet-shaped openings on load carrying capacity is very small or even negligible. For the water-lubricated polymer bearing with axial grooves analyzed in this paper, the appropriate trumpet-shaped openings increase the minimum film thickness from 0.53 to 11.14 µm and decrease the load carrying capacity by 2.48 per cent.

Practical implications

The results of this study can be applied to marine propeller shaft systems and other systems with polymer bearings.

Originality/value

This paper has presented an approach for significantly increasing the minimum film thickness of a water-lubricated polymer bearing. A study on the performance improvement of water-lubricated polymer bearings with axial grooves is of significant interest to the research community.

Details

Industrial Lubrication and Tribology, vol. 71 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 4 January 2022

Qi Liu, Baiqi Huo, Yunsheng Liu and Junchao Zhu

The edge of diesel engine crankshaft main bearing is more likely to fail in its real working condition. This paper aims to study the bearing failure mechanism by finding the…

Abstract

Purpose

The edge of diesel engine crankshaft main bearing is more likely to fail in its real working condition. This paper aims to study the bearing failure mechanism by finding the relationship between bearing lubrication characteristics and its working condition.

Design/methodology/approach

This work builds the mixed lubrication model of crankshaft bearing to analyze the cause of bearing abnormal wear, and the finite difference method was used to solving the average Reynolds equation. During the analysis, journal misaligned angle, external load and roughness are considered.

Findings

The result shows that the wear of the diesel engine crankshaft bearing happens in engine startup phase and the bottom of the bearing are more prone to be excessively worn. Under the influence of journal misalignment, bearing asperity contact load and speed range of mixed lubrication will increase markedly. The edge of the bearing will be excessively worn. The effect of misalignment on bearing lubrication performance varies under different shaft rotation speed.

Originality/value

The former research studies on crankshaft bearing either just focused on its lubrication characteristics or interested in its failure types (wear, adhere, cavitation). This paper studies the relationship between bearing failure mechanism and lubrication performance.

Details

Industrial Lubrication and Tribology, vol. 74 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of over 1000