Search results

1 – 10 of over 102000
Article
Publication date: 4 December 2018

Xun Ma, Wubin Xu, Xueping Zhang and Fuyong Yang

This paper aims to investigate how form error of journal affects oil film characteristics, which are composed of several parameters including the maximum film pressure, film…

Abstract

Purpose

This paper aims to investigate how form error of journal affects oil film characteristics, which are composed of several parameters including the maximum film pressure, film moment, frictional coefficient and carrying-load capacity.

Design/methodology/approach

A new generalized equation based on the small displacement torsor theory is derived, as well as its capability of representing types of form error on the journal, using four specified parameters in a three-dimensional (3D) state. Based on the new generalized equation of form errors, the Reynolds equation is represented and solved numerically using the Swift–Stieber boundary condition.

Findings

The results show that the form errors of journal have significant influence on all oil film characteristics. However, the film moment remains nearly unchanged as film characteristics, especially eccentricity ratio, become large. All film characteristics investigated vary periodically as the form error. More importantly, it is found that the film pressure distribution transforms to an asymmetric shape along the axial direction of the bearing, no longer a symmetric shape in the case of two-dimensional (2D) form errors. It is necessary to substitute the 3D form error model, which takes the variations of the film characteristics in axial direction into account, for the 2D model in the designing stage of journal bearings.

Originality/value

First, the effect of the form error of the journal on the performance of hydrodynamic journal bearings is studied in the view of the film characteristics systematically. Secondly, the new generalized equation of form error, derived by SDT theory, is capable of representing any types of form error on the journal, not only representing one type of form error merely.

Details

Industrial Lubrication and Tribology, vol. 71 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 10 May 2019

Wilma Polini and Andrea Corrado

The purpose of this paper is to model how geometric errors of a machined surface (or manufacturing errors) are related to locators’ error, workpiece form error and machine tool…

Abstract

Purpose

The purpose of this paper is to model how geometric errors of a machined surface (or manufacturing errors) are related to locators’ error, workpiece form error and machine tool volumetric error. A kinematic model is presented that puts into relationship the locator error, the workpiece form deviations and the machine tool volumetric error.

Design/methodology/approach

The paper presents a general and systematic approach for geometric error modelling in drilling because of the geometric errors of locators positioning, of workpiece datum surface and of machine tool. The model can be implemented in four steps: (1) calculation of the deviation in the workpiece reference frame because of deviations of locator positions; (2) evaluation of the deviation in the workpiece reference frame owing to form deviations in the datum surfaces of the workpiece; (3) formulation of the volumetric error of the machine tool; and (4) combination of those three models.

Findings

The advantage of this approach lies in that it enables the source errors affecting the drilling accuracy to be explicitly separated, thereby providing designers and/or field engineers with an informative guideline for accuracy improvement through suitable measures, i.e. component tolerancing in design, machining and so on. Two typical drilling operations are taken as examples to illustrate the generality and effectiveness of this approach.

Research limitations/implications

Some source errors, such as the dynamic behaviour of the machine tool, are not taken into consideration, which will be modelled in practical applications.

Practical implications

The proposed kinematic model may be set by means of experimental tests, concerning the industrial specific application, to identify the values of the model parameters, such as standard deviation of the machine tool axes positioning and rotational errors. Then, it may be easily used to foresee the location deviation of a single or a pattern of holes.

Originality/value

The approaches present in the literature aim to model only one or at most two sources of machining error, such as fixturing, machine tool or workpiece datum. This paper goes beyond the state of the art because it considers the locator errors together with the form deviation on the datum surface into contact with the locators and, then, the volumetric error of the machine tool.

Details

Engineering Computations, vol. 36 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 5 May 2015

Abdelilah Jalid, Said Hariri and Jean Paul Senelaer

The uncertainty evaluation for coordinate measuring machine metrology is problematic due to the diversity of the parameters that can influence the measurement result. From…

Abstract

Purpose

The uncertainty evaluation for coordinate measuring machine metrology is problematic due to the diversity of the parameters that can influence the measurement result. From discrete coordinate data taken on curve (or surface) the software of these machines proceeds to an identification of the measured feature, the parameters of the substitute feature serve in the phase of calculation to estimate the form error of form, and the decisions made based on the result measurement may be outliers when the uncertainty associated to the measurement result is not taken into account. The paper aims to discuss these issues.

Design/methodology/approach

The authors relied on the orthogonal distance regression (ODR) algorithm to estimate the parameters of the substitute geometrical elements and their uncertainties. The solution of the problem is resolved by an iterative calculation according to the Levenberg Marquard optimization method. The authors have also presented in this paper the propagation model of uncertainties to the circularity error. This model is based on the law of propagation of the uncertainties defined in the GUM.

Findings

This work proposes a model based on ODR to estimates parameters of the substitute geometrical elements and their uncertainties. This contribution allows us to estimate the uncertaintof the form error by applying the law of propagation of uncertainties. An example of calculating the circularity error and the associated uncertainty is explained. This method can be applied to others geometry type: line, plan, sphere, cylinder and cone.

Practical implications

This work interested manufacturing firms by allowing them: to meet the normative, which requires that each measurement must be accompanied by its uncertainty-in conformity assessment, the decision-making must take account of this uncertainty to avoid the aberrant decisions. Informing the operators on the capability of their measurement process

Originality/value

This work proposes a model based on ODR to estimates parameters of the substitute geometrical elements and its uncertainties. without the hypothesis of small displacements torsor, this method integrates the uncertainty on the coordinates of points and can be applied in any reference placemark. This contribution allows us also to estimate the uncertainty of the form error by applying the law of propagation of uncertainties.

Details

International Journal of Quality & Reliability Management, vol. 32 no. 5
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 1 March 1995

Sam A. Khosh‐Khui

Describes an electronic OCLC error reporting (OER) programdeveloped at the Albert B. Alkek Library, Southwest Texas StateUniversity, in response to the OCLC announcement that OCLC…

137

Abstract

Describes an electronic OCLC error reporting (OER) program developed at the Albert B. Alkek Library, Southwest Texas State University, in response to the OCLC announcement that OCLC users could begin submitting bibliographic record change requests and duplicate record reports via Internet e‐mail. OER is a menu‐driven program written in VAX VMS which facilitates sending OCLC error reports by providing blank error‐report forms for various error‐reporting activities. This is accomplished by adding constant and system‐supplied information to the forms and then automatically sending the forms, while giving ample opportunities to review the accuracy of the outgoing report. Doing so provides more uniformity and accuracy in the reporting process and saves money and staff time. Suggests that, although the program is written for the SWT library, it may easily be modified and used by other compatible institutions.

Details

OCLC Systems & Services: International digital library perspectives, vol. 11 no. 1
Type: Research Article
ISSN: 1065-075X

Keywords

Abstract

This article surveys recent developments in the evaluation of point and density forecasts in the context of forecasts made by vector autoregressions. Specific emphasis is placed on highlighting those parts of the existing literature that are applicable to direct multistep forecasts and those parts that are applicable to iterated multistep forecasts. This literature includes advancements in the evaluation of forecasts in population (based on true, unknown model coefficients) and the evaluation of forecasts in the finite sample (based on estimated model coefficients). The article then examines in Monte Carlo experiments the finite-sample properties of some tests of equal forecast accuracy, focusing on the comparison of VAR forecasts to AR forecasts. These experiments show the tests to behave as should be expected given the theory. For example, using critical values obtained by bootstrap methods, tests of equal accuracy in population have empirical size about equal to nominal size.

Details

VAR Models in Macroeconomics – New Developments and Applications: Essays in Honor of Christopher A. Sims
Type: Book
ISBN: 978-1-78190-752-8

Keywords

Article
Publication date: 1 April 1990

B. Kirwan, B. Martin, H. Rycraft and A. Smith

Human error data in the form of human error probabilities should ideally form the corner‐stone of human reliability theory and practice. In the history of human reliability…

Abstract

Human error data in the form of human error probabilities should ideally form the corner‐stone of human reliability theory and practice. In the history of human reliability assessment, however, the collection and generation of valid and usable data have been remarkably elusive. In part the problem appears to extend from the requirement for a technique to assemble the data into meaningful assessments. There have been attempts to achieve this, THERP being one workable example of a (quasi) database which enables the data to be used meaningfully. However, in recent years more attention has been focused on the PerformanceShaping Factors (PSF) associated with human reliability. A “database for today” should therefore be developed in terms of PSF, as well as task/ behavioural descriptors, and possibly even psychological error mechanisms. However, this presumes that data on incidents and accidents are collected and categorised in terms of the PSF contributing to the incident, and such classification systems in practice are rare. The collection and generation of a small working database, based on incident records are outlined. This has been possible because the incident‐recording system at BNFL Sellafield does give information on PSF. Furthermore, the data have been integrated into the Human Reliability Management System which is a PSF‐based human reliability assessment system. Some of the data generated are presented, as well as the PSF associated with them, and an outline of the incident collection system is given. Lastly, aspects of human common mode failure or human dependent failures, particularly at the lower human error probability range, are discussed, as these are unlikely to be elicited from data collection studies, yet are important in human reliability assessment. One possible approach to the treatment of human dependent failures, the utilisation of human performance‐limiting values, is described.

Details

International Journal of Quality & Reliability Management, vol. 7 no. 4
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 6 January 2021

Ruolong Qi, Yuangui Tang and Ke Zhang

For some special manipulators such as the ones work at the space station, nuclear or some other unmanned environments, the overload, collision, vibration, temperature change or…

Abstract

Purpose

For some special manipulators such as the ones work at the space station, nuclear or some other unmanned environments, the overload, collision, vibration, temperature change or release of the internal stress would affect the structural parameters. And thus the operation precision might constantly decrease in long-term use. In these unmanned environments, the unattended manipulators should calibrate itself when they execute high precision operations or proceed self-maintenances. The purpose of this paper is to propose an automatic visual assistant on-line calibration (AVOC) method based on multi-markers.

Design/methodology/approach

A camera fixed on the end of the manipulator is used to measure one to three identification points, which forms an unstable multi-sensor eye-in-hand system. A Gaussian motion method which combines the linear quadratic regulator control and extended Kalman filter together is proposed to make the manipulator track the planned trajectories when its inaccurate structural parameters form uncertain motion errors. And a Monte-Carlo method is proposed to form a high precision and stable signal acquisition when the visual system has measurement errors and intermittent signal feedback. An automatic sampling process is adopted to select the optimal measurement points basing on their variances.

Findings

Data analysis and experiment results prove the efficiency and feasibility of the method proposed in this paper. With this method, the positioning accuracy is largely promoted from about 2 mm to 0.04–0.05 mm.

Originality/value

Experiments were carried out successfully on a manipulator in a life sciences glove box that will work at the Chinese space station. It is a low cost and efficient manipulator calibration method. The whole autonomic calibration process takes less than 10 min and requires no human intervention. In addition, this method not only can be used in the calibration of other unmanned articulated manipulator that works in deep ocean, nuclear industry or space but also be useful for the maintenance work in modern factories owing a lot of industrial robots.

Details

Industrial Robot: the international journal of robotics research and application, vol. 48 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 17 October 2017

Antonio Armillotta and Marco Cavallaro

The purpose of this paper is to discuss the problem of the geometric accuracy of edges in parts manufactured by the Fused Deposition Modeling process, as a preliminary step for an…

Abstract

Purpose

The purpose of this paper is to discuss the problem of the geometric accuracy of edges in parts manufactured by the Fused Deposition Modeling process, as a preliminary step for an experimental investigation.

Methodology/approach

Three geometric variables (inclination, included and incidence angles) were defined for an edge. The influence of each variable on the geometric errors was explained with reference to specific causes related to physical phenomena and process constraints.

Findings

Occurrence conditions for all causes were determined and visualized in a process map, which was also developed into a software procedure for the diagnosis of quality issues on digital models of the parts.

Research limitations/implications

The process map was developed by only empirical considerations and does not allow to predict the amount of geometric errors. In the second part of the paper, experimental tests will help to extend and validate the prediction criteria.

Practical implications

As demonstrated by an example, the results allow to predict the occurrence of visible defects on the edges of a part before manufacturing it with a given build orientation.

Originality/value

In literature, the geometric accuracy of additively manufactured parts is only related to surface features. The paper shows that the quality of edges depends on additional variables and causes to be carefully controlled by process choices.

Details

Rapid Prototyping Journal, vol. 23 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 4 September 2018

Muhannad Aldosary, Jinsheng Wang and Chenfeng Li

This paper aims to provide a comprehensive review of uncertainty quantification methods supported by evidence-based comparison studies. Uncertainties are widely encountered in…

Abstract

Purpose

This paper aims to provide a comprehensive review of uncertainty quantification methods supported by evidence-based comparison studies. Uncertainties are widely encountered in engineering practice, arising from such diverse sources as heterogeneity of materials, variability in measurement, lack of data and ambiguity in knowledge. Academia and industries have long been researching for uncertainty quantification (UQ) methods to quantitatively account for the effects of various input uncertainties on the system response. Despite the rich literature of relevant research, UQ is not an easy subject for novice researchers/practitioners, where many different methods and techniques coexist with inconsistent input/output requirements and analysis schemes.

Design/methodology/approach

This confusing status significantly hampers the research progress and practical application of UQ methods in engineering. In the context of engineering analysis, the research efforts of UQ are most focused in two largely separate research fields: structural reliability analysis (SRA) and stochastic finite element method (SFEM). This paper provides a state-of-the-art review of SRA and SFEM, covering both technology and application aspects. Moreover, unlike standard survey papers that focus primarily on description and explanation, a thorough and rigorous comparative study is performed to test all UQ methods reviewed in the paper on a common set of reprehensive examples.

Findings

Over 20 uncertainty quantification methods in the fields of structural reliability analysis and stochastic finite element methods are reviewed and rigorously tested on carefully designed numerical examples. They include FORM/SORM, importance sampling, subset simulation, response surface method, surrogate methods, polynomial chaos expansion, perturbation method, stochastic collocation method, etc. The review and comparison tests comment and conclude not only on accuracy and efficiency of each method but also their applicability in different types of uncertainty propagation problems.

Originality/value

The research fields of structural reliability analysis and stochastic finite element methods have largely been developed separately, although both tackle uncertainty quantification in engineering problems. For the first time, all major uncertainty quantification methods in both fields are reviewed and rigorously tested on a common set of examples. Critical opinions and concluding remarks are drawn from the rigorous comparative study, providing objective evidence-based information for further research and practical applications.

Details

Engineering Computations, vol. 35 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 8 May 2019

Feiyan Guo, Fang Zou, Jian Hua Liu, Qingdong Xiao and Zhongqi Wang

Manufacturing errors, which will propagate along the assembly process, are inevitable and difficult to analyze for complex products, such as aircraft. To realize the goal of…

Abstract

Purpose

Manufacturing errors, which will propagate along the assembly process, are inevitable and difficult to analyze for complex products, such as aircraft. To realize the goal of precise assembly for an aircraft, with revealing the nonlinear transfer mechanism of assembly error, a set of analytical methods with response to the assembly error propagation process are developed. The purpose of this study is to solve the error problems by modeling and constructing the coordination dimension chain to control the consistency of accumulated assembly errors for different assemblies.

Design/methodology/approach

First, with the modeling of basic error sources, mutual interaction relationship of matting error and deformation error is analyzed, and influence matrix is formed. Second, by defining coordination datum transformation process, practical establishing error of assembly coordinate system is studied, and the position of assembly features is modified with actual relocation error considering datum changing. Third, considering the progressive assembly process, error propagation for a single assembly station and multi assembly stations is precisely modeled to gain coordination error chain for different assemblies, and the final coordination error is optimized by controlling the direction and value of accumulated error range.

Findings

Based on the proposed methodology, coordination error chain, which has a direct influence on the property of stealthy and reliability for modern aircrafts, is successfully constructed for the assembly work of the jointing between leading edge flap component and wing component at different assembly stations.

Originality/value

Precise assembly work at different assembly stations is completed to verify methodology’s feasibility. With analyzing the main comprised error items and some optimized solutions, benefit results for the practical engineering application showing that the maximum value of the practical flush of the profiles between the two components is only 0.681 mm, the minimum value is only 0.021 mm, and the average flush of the entire wing component is 0.358 mm, which are in accordance with theoretical calculation results and can successfully fit the assembly requirement. The potential user can be the engineers for manufacturing the complex products.

Details

Assembly Automation, vol. 39 no. 2
Type: Research Article
ISSN: 0144-5154

Keywords

1 – 10 of over 102000