Search results

1 – 10 of 825
Article
Publication date: 28 October 2014

Kun Zhou and Zhu He

The purpose of this paper is to investigate aerosol evolution in a planar mixing layer from a Lagrangian point of view. After using Monte Carlo (MC) method to simulate the…

Abstract

Purpose

The purpose of this paper is to investigate aerosol evolution in a planar mixing layer from a Lagrangian point of view. After using Monte Carlo (MC) method to simulate the evolution of aerosol dynamics along particles trajectories, the particles size distributions are obtained, which are unavailable in mostly used methods of moments.

Design/methodology/approach

Nucleation and growth of dibutyl phthalate (DBP) particles are simulated using the quadrature method of moments in a planar mixing layer, where a fast hot stream with DBP vapor is mixing with a slow cool stream without vapor. Trajectories of aerosol particles are recorded. MC method is used to simulate the aerosol evolution along trajectories.

Findings

Investigation on aerosol evolution along the trajectories prompts to classify these trajectories into three groups: first, trajectories away from the active nucleation zone; second, trajectories starting from the active nucleation zone; and third, trajectories crossing over the active nucleation zone. Particle size distributions (psds) along selected representative trajectories are investigated. The psd evolution exhibits interesting behavior due to the synthetic effects of nucleation and condensation. Condensation growth tends to narrow down the psd, and form a sharp front on the side of big particle size. Nucleation is able to broaden the psd through generating the smallest particles. The duration and strength of nucleation have significant effect on the shape of psd.

Originality/value

As far as the authors knowledge, it is the first simulation of aerosol evolution that takes a Lagrangian point of view, and uses MC simulation along particles trajectories to provide the particles size distribution.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 24 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 May 1993

B. BENNANI, P. PICART and J. OUDIN

Microstructure void volume fraction is taken into account in finite element models developed for large strain elastoplastic problems. Void nucleation rate is related to matrix…

Abstract

Microstructure void volume fraction is taken into account in finite element models developed for large strain elastoplastic problems. Void nucleation rate is related to matrix effective strain rate, void growth to material strain rate and associated elastoplastic potential available for porous material, void coalescence to matrix effective strain rate. The related radial return algorithm is described. Three types of computations are proposed: first, axisymmetric Q4 element traction are given as validation example; second, collar cylinder compression are computed as reference example; third, bulk forming are analysed as large strain specific example. Void volume fraction and hydrostatic stress are mainly discussed according to microvoids nucleation, growth and coalescence. Finally, the main interests of those computations are enhanced.

Details

Engineering Computations, vol. 10 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 3 January 2017

Shuyuan Liu and Tat L. Chan

The purpose of this paper is to study the complex aerosol dynamic processes by using this newly developed stochastically weighted operator splitting Monte Carlo (SWOSMC) method.

Abstract

Purpose

The purpose of this paper is to study the complex aerosol dynamic processes by using this newly developed stochastically weighted operator splitting Monte Carlo (SWOSMC) method.

Design/methodology/approach

Stochastically weighted particle method and operator splitting method are coupled to formulate the SWOSMC method for the numerical simulation of particle-fluid systems undergoing the complex simultaneous processes.

Findings

This SWOSMC method is first validated by comparing its numerical simulation results of constant rate coagulation and linear rate condensation with the corresponding analytical solutions. Coagulation and nucleation cases are further studied whose results are compared with the sectional method in excellent agreement. This SWOSMC method has also demonstrated its high numerical simulation capability when used to deal with simultaneous aerosol dynamic processes including coagulation, nucleation and condensation.

Originality/value

There always exists conflict and tradeoffs between computational cost and accuracy for Monte Carlo-based methods for the numerical simulation of aerosol dynamics. The operator splitting method has been widely used in solving complex partial differential equations, while the stochastic-weighted particle method has been commonly used in numerical simulation of aerosol dynamics. However, the integration of these two methods has not been well investigated.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 21 December 2020

Mohamed Ibrahim N.H., M. Udayakumar, Sivan Suresh, Suvanjan Bhattacharyya and Mohsen Sharifpur

This study aims to investigate the insights of soot formation such as rate of soot coagulation, rate of soot nucleation, rate of soot surface growth and soot surface oxidation in…

Abstract

Purpose

This study aims to investigate the insights of soot formation such as rate of soot coagulation, rate of soot nucleation, rate of soot surface growth and soot surface oxidation in ethylene/hydrogen/nitrogen diffusion jet flame at standard atmospheric conditions, which is very challenging to capture even with highly sophisticated measuring systems such as Laser Induced Incandescence and Planar laser-induced fluorescence. The study also aims to investigate the volume of soot in the flame using soot volume fraction and to understand the global correlation effect in the formation of soot in ethylene/hydrogen/nitrogen diffusion jet flame.

Design/methodology/approach

A large eddy simulation (LES) was performed using box filtered subgrid-scale tensor. A filtered and residual component of the governing equations such as continuity, momentum, energy and species are resolved and modeled, respectively. All the filtered and residual components are numerically solved using the ILU method by considering PISO pressure–velocity solver. All the hyperbolic flux uses the QUICK algorithm, and an elliptic flux uses SOU to evaluate face values. In all the cases, Courant–Friedrichs–Lewy (CFL) conditions are maintained unity.

Findings

The findings are as follows: soot volume fraction (SVF) as a function of a flame-normalized length for three different Reynolds number configurations (Re = 15,000, Re = 8,000 and Re = 5,000) using LES; soot gas phase and particulate phase insights such as rate of soot nucleation, rate of soot coagulation, rate of soot surface growth and soot surface oxidation for three different Reynolds number configurations (Re = 15,000, Re = 8,000 and Re = 5,000); and soot global correction using total soot volume in the flame volume as a function of Reynolds number and Froude number.

Originality/value

The originality of this study includes the following: coupling LES turbulent model with chemical equilibrium diffusion combustion conjunction with semi-empirical Brookes Moss Hall (BMH) soot model by choosing C6H6 as a soot precursor kinetic pathway; insights of soot formations such as rate of soot nucleation, soot coagulation rate, soot surface growth rate and soot oxidation rate for ethylene/hydrogen/nitrogen co-flow flame; and SVF and its insights study for three inlet fuel port configurations having the three different Reynolds number (Re = 15,000, Re = 8,000 and Re = 5,000).

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 20 March 2009

C. Zhang, Y. Huang, Y. Liu, S. Wang and X. Zhang

The purpose of this paper is to study the isothermal and nonisothermal crystallisation kinetics of pure polypropylene (PP), 1 kGy pre‐irradiated PP and 1 kGy pre‐irradiated…

Abstract

Purpose

The purpose of this paper is to study the isothermal and nonisothermal crystallisation kinetics of pure polypropylene (PP), 1 kGy pre‐irradiated PP and 1 kGy pre‐irradiated PP/syndiotactic 1,2‐polybutadiene (s‐1,2 PB) (90/10) blends by differential scanning calorimetry.

Design/methodology/approach

The Avrami equation, modified Avrami equation, Ozawa equation and the treatment by combining the Avrami and Ozawa equation were used to analyse the isothermal and nonisothermal crystallisation of various samples.

Findings

The s‐1,2 PB acted as a heterogeneous nucleation agent during the crystallisation of the PP/s‐1,2 PB blends and accelerated the crystallisation rate. The Avrami exponent n of the blends implied that the isothermal crystallisation kinetics of the blends followed a three‐dimensional growth via heterogeneous nucleation. The modified Avrami equation was limited to describe the nonisothermal crystallisation process of pure PP and 1 kGy pre‐irradiated PP, but it was successful for the blends. The treatment by combining the Avrami and Ozawa equation described appropriately the nonisothermal crystallisation process and obtained the kinetic parameter F(T) with specific physical meaning. The crystallisation activation energy for isothermal crystallisation and nonisothermal crystallisation of the blends was reduced due to the s‐1,2 PB acting as a heterogeneous nucleating agent during the crystallisation of the blends and accelerating the crystallisation rate.

Research limitations/implications

The Avrami equation, modified Avrami equation, Ozawa equation and the treatment by combining the Avrami and Ozawa equation were compared for analysis of the isothermal and nonisothermal crystallisation of samples. The crystallisation activation energy for isothermal crystallisation and nonisothermal crystallisation was also calculated according to the Arrhenius and the Kissinger method.

Practical implications

The fundamental research on the crystallisation properties of PP/s‐1,2‐PB blends is essential to understand the mutual effects of two components on their crystallisation mechanisms, facilitating to improve the mechanical properties of the final materials.

Originality/value

The isothermal and nonisothermal crystallisation behaviours of PP/s‐1,2 PB blends, especially pre‐irradiated PP/s‐1,2 PB blends, have not been studied systematically yet, though PP/s‐1,2 PB blends were promising materials in terms of both PP toughening and the application of s‐1,2 PB thermal plastic elastomer.

Details

Pigment & Resin Technology, vol. 38 no. 2
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 2 September 2021

Xiao Jiang and Tat Leung Chan

The purpose of this paper is to study the soot formation and evolution by using this newly developed Lagrangian particle tracking with weighted fraction Monte Carlo (LPT-WFMC…

Abstract

Purpose

The purpose of this paper is to study the soot formation and evolution by using this newly developed Lagrangian particle tracking with weighted fraction Monte Carlo (LPT-WFMC) method.

Design/methodology/approach

The weighted soot particles are used in this MC framework and is tracked using Lagrangian approach. A detailed soot model based on the LPT-WFMC method is used to study the soot formation and evolution in ethylene laminar premixed flames.

Findings

The LPT-WFMC method is validated by both experimental and numerical results of the direct simulation Monte Carlo (DSMC) and Multi-Monte Carlo (MMC) methods. Compared with DSMC and MMC methods, the stochastic error analysis shows this new LPT-WFMC method could further extend the particle size distributions (PSDs) and improve the accuracy for predicting soot PSDs at larger particle size regime.

Originality/value

Compared with conventional weighted particle schemes, the weight distributions in LPT-WFMC method are adjustable by adopting different fraction functions. As a result, the number of numerical soot particles in each size interval could be also adjustable. The stochastic error of PSDs in larger particle size regime can also be minimized by increasing the number of numerical soot particles at larger size interval.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 23 October 2018

Jingfu Liu, Behrooz Jalalahmadi, Y.B. Guo, Michael P. Sealy and Nathan Bolander

Additive manufacturing (AM) is revolutionizing the manufacturing industry due to several advantages and capabilities, including use of rapid prototyping, fabrication of complex…

1133

Abstract

Purpose

Additive manufacturing (AM) is revolutionizing the manufacturing industry due to several advantages and capabilities, including use of rapid prototyping, fabrication of complex geometries, reduction of product development cycles and minimization of material waste. As metal AM becomes increasingly popular for aerospace and defense original equipment manufacturers (OEMs), a major barrier that remains is rapid qualification of components. Several potential defects (such as porosity, residual stress and microstructural inhomogeneity) occur during layer-by-layer processing. Current methods to qualify AM parts heavily rely on experimental testing, which is economically inefficient and technically insufficient to comprehensively evaluate components. Approaches for high fidelity qualification of AM parts are necessary.

Design/methodology/approach

This review summarizes the existing powder-based fusion computational models and their feasibility in AM processes through discrete aspects, including process and microstructure modeling.

Findings

Current progresses and challenges in high fidelity modeling of AM processes are presented.

Originality/value

Potential opportunities are discussed toward high-level assurance of AM component quality through a comprehensive computational tool.

Details

Rapid Prototyping Journal, vol. 24 no. 8
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 March 2002

G.H. Yeoh, R.K.K. Yuen, E.W.M. Lee and S.C.P. Chueng

This paper presents a comparison of numerical predictions employing a Computational Fluid Dynamics fire model against a series of turbulent buoyant fire experiments recently…

Abstract

This paper presents a comparison of numerical predictions employing a Computational Fluid Dynamics fire model against a series of turbulent buoyant fire experiments recently carried out in a two‐room compartment structure by Nielsen and Fleischmann at the University of Canterbuty, New Zealand. The model incorporates turbulence, combustion, soot generation and radiation due to a fire. An evaluation of the various approaches—volumetric heat source approach or a more sophisticated handling the fire through a combustion model—is carried out. The effect of radiation due to combustion products and soot is also investigated. The model considering combustion with radiation contribution by both the combustion products and soot provides the best agreement between the predicted results and measured data. The presence of soot is seen to significantly augment the global radiation process within the two‐compartment enclosure.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 12 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 24 July 2007

J. Smirnova, L. Silva, B. Monasse, J‐M. Haudin and J‐L. Chenot

This paper sets out to show the feasibility of the genetic algorithm inverse method for the determination of the parameters of crystallization kinetics laws in isothermal and…

Abstract

Purpose

This paper sets out to show the feasibility of the genetic algorithm inverse method for the determination of the parameters of crystallization kinetics laws in isothermal and non‐isothermal conditions, using multiple experiments.

Design/methodology/approach

The mathematical model for crystallization kinetics determination and the numerical methods of its resolution are introduced. Crystallization kinetic parameters determined by approximate physical analysis and the inverse genetic algorithm method are presented. Injection molding simulations taking into account crystallization are performed using the finite element method.

Findings

It is necessary to perform the optimization on two parameters, transformed volume fraction and number of spherulites to obtain correct results. It is possible to use results from different samples, in spite of the dispersion of some values.

Research limitations/implications

Experimental data for isothermal and non‐isothermal conditions were used and obtained good results for the parameters of crystallization kinetics laws from which the evolutions of overall crystallization kinetics and crystalline microstructure were deduced. Nevertheless, the dispersion of the experimental data concerning the number of spherulites obtained with different samples is important. The evolution of the number of spherulites is required for the optimization to get correct results.

Practical implications

An important result of this work is that the genetic algorithm optimization can be applied to this problem where the experiments cannot be performed with a single sample and the experimental data for the number of spherulites have low precision. Even if only the crystallization kinetics was considered, the feasibility in molding simulation has been shown.

Originality/value

Simulation of crystallization in injection molding is very important for a later prediction of the end‐use properties.

Details

Engineering Computations, vol. 24 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 29 November 2018

Simbarashe Fashu and Rajwali Khan

Thin coatings are of great importance to minimize corrosion attack of steel in different environments. A review of recent work on electrodeposition and corrosion performance of…

Abstract

Purpose

Thin coatings are of great importance to minimize corrosion attack of steel in different environments. A review of recent work on electrodeposition and corrosion performance of Zn-Ni-based alloys for sacrificial corrosion protection of ferrous substrates is presented. The purpose of this study is to provide a systematic comparison of the corrosion resistances of Zn-Ni alloy coatings. The review contains key and outstanding comparisons of references for the period from 2007 to 2017. Binary and ternary Zn-Ni-based alloys were compared and contrasted to provide a good knowledge basis for selection of best coating system to steel substrates.

Design/methodology/approach

This article is a review article.

Findings

Zn-Ni-(X) alloys show great potential for replacing Cd metal in corrosion protection of steel substrates.

Practical implications

The research on plating of binary Zn-Ni alloys from aqueous electrolytes is now well advanced and these alloys show improved corrosion resistance compared to pure Zn. Pulse plated and compositionally modulated multilayer Zn-Ni alloy coatings showed enhanced corrosion properties compared to direct plated Zn-Ni coatings of similar composition.

Originality/value

The work on electrodeposition of Zn-Ni based alloys from ionic liquids is still scarce, yet these liquids show great promise in improving corrosion resistance and reducing coating thickness when compared to aqueous electrolytes. Advanced plating techniques in ionic liquids such as electromagnetic, compositionally modulated multilayer, pulse plating, ternary alloys and composites should be considered as these electrolytes avoid water chemistry and associated defects.

Details

Anti-Corrosion Methods and Materials, vol. 66 no. 1
Type: Research Article
ISSN: 0003-5599

Keywords

1 – 10 of 825