Search results

1 – 10 of 224
Article
Publication date: 2 September 2021

Xiao Jiang and Tat Leung Chan

The purpose of this paper is to study the soot formation and evolution by using this newly developed Lagrangian particle tracking with weighted fraction Monte Carlo (LPT-WFMC…

Abstract

Purpose

The purpose of this paper is to study the soot formation and evolution by using this newly developed Lagrangian particle tracking with weighted fraction Monte Carlo (LPT-WFMC) method.

Design/methodology/approach

The weighted soot particles are used in this MC framework and is tracked using Lagrangian approach. A detailed soot model based on the LPT-WFMC method is used to study the soot formation and evolution in ethylene laminar premixed flames.

Findings

The LPT-WFMC method is validated by both experimental and numerical results of the direct simulation Monte Carlo (DSMC) and Multi-Monte Carlo (MMC) methods. Compared with DSMC and MMC methods, the stochastic error analysis shows this new LPT-WFMC method could further extend the particle size distributions (PSDs) and improve the accuracy for predicting soot PSDs at larger particle size regime.

Originality/value

Compared with conventional weighted particle schemes, the weight distributions in LPT-WFMC method are adjustable by adopting different fraction functions. As a result, the number of numerical soot particles in each size interval could be also adjustable. The stochastic error of PSDs in larger particle size regime can also be minimized by increasing the number of numerical soot particles at larger size interval.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 March 2005

M.A. Habib, R. Ben‐Mansour, H.M. Badr, S.A.M. Said and S.S. Al‐Anizi

In oil and gas industries, the presence of sand particles in produced oil and natural gas represents a major concern because of the associated erosive wear occurring in various…

1080

Abstract

Purpose

In oil and gas industries, the presence of sand particles in produced oil and natural gas represents a major concern because of the associated erosive wear occurring in various flow passages. Erosion in the tube entrance region of a typical shell and tube heat exchanger is numerically predicted.

Design/methodology/approach

The erosion rates are obtained for different flow rates and particle sizes assuming low particle concentration. The erosion prediction is based on using a mathematical model for simulating the fluid velocity field and another model for simulating the motion of solid particles. The fluid velocity (continuous phase) model is based on the solution of the time‐averaged governing equations of 3D turbulent flow while the particletracking model is based on the solution of the governing equation of each particle motion taking into consideration the viscous and gravity forces as well as the effect of particle rebound behavior.

Findings

The results show that the location and number of eroded tubes depend mainly on the particle size and velocity magnitude at the header inlet. The rate of erosion depends exponentially on the velocity. The particle size shows negligible effect on the erosion rate at high velocity values and the large‐size particles show less erosion rates compared to the small‐size particles at low values of inlet flow velocities.

Originality/value

In oil and gas industries, the presence of sand particles in produced oil and natural gas represents a major concern because of the associated erosive wear occurring in various flow passages. The results indicate that erosion in shell and tube heat exchanger can be minimized through the control of velocity inlet to the header.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 15 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 5 October 2021

Adel Ghenaiet

This study aims to investigate the trajectories of sand particles and erosion wear in a hydraulic turbine model.

Abstract

Purpose

This study aims to investigate the trajectories of sand particles and erosion wear in a hydraulic turbine model.

Design/methodology/approach

The Lagrangian-based approach is used to track large numbers of sand particles and determine their impact through the hydro turbine components. The tracking procedure includes the stochastic eddy interaction model and the squeeze film effect. The number of particles, sizes and release positions are conformed to the particle concentration and size distribution. The impact locations, frequency and conditions of impacts are used to estimate the erosion rates and thereby the eroded mass from the distributor vane and the rotor blade and their deteriorated geometry.

Findings

The patterns of erosion in the stationary and rotating parts differ significantly and the effect of the initial position of the runner blade is elucidated. The distributor vane is characterized by a widespread of erosion over the pressure side. Typically, the surface beyond the throat and the root and tip junctions are the regions prone to erosion wear. The entry region of the runner blade is subject to a high number of impacts resulting in high erosion rates visible from the forepart of the blade pressure side.

Practical implications

The erosion patterns and geometry deterioration may serve to evaluate the drop in the hydraulic performance and to select the appropriate surface coating to extend the lifetime of the turbomachinery parts and reduce the maintenance cost.

Originality/value

Erosion developments reveal a strong dependence on the blade position against the distributor vane and the particle size and concentration level.

Details

Engineering Computations, vol. 39 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 27 March 2009

Zdzislaw Mazur, Rafael Campos‐Amezcua and Alfonso Campos‐Amezcua

This paper aims to validate an axial turbine modified nozzle design, looking for a reduction of the nozzle erosion process during operation in power plants.

Abstract

Purpose

This paper aims to validate an axial turbine modified nozzle design, looking for a reduction of the nozzle erosion process during operation in power plants.

Design/methodology/approach

The approach taken is numerical simulation using the computational fluid dynamics (CFD) tool, comparing original and proposed/modified nozzle designs.

Findings

The paper provides information about how to achieve a solution of the turbine operational problem (abrasive wear) by an analysis of flow patterns under a variety of conditions.

Research limitations/implications

It does not give a detailed interpretation of flow behaviour due to the lack of validation data.

Practical implications

A very useful flow simulation methodology that can be used in industry is provided.

Originality/value

The proposed design modification of an axial turbine nozzle with the aid of CFD simulation has not been performed yet. This paper investigates the possibility of nozzle erosion reduction by modifying local flow patterns.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 19 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 17 July 2019

Ali Ayyed Abdul-Kadhim, Fue-Sang Lien and Eugene Yee

This study aims to modify the standard probabilistic lattice Boltzmann methodology (LBM) cellular automata (CA) algorithm to enable a more realistic and accurate computation of…

Abstract

Purpose

This study aims to modify the standard probabilistic lattice Boltzmann methodology (LBM) cellular automata (CA) algorithm to enable a more realistic and accurate computation of the ensemble rather than individual particle trajectories that need to be updated from one time step to the next (allowing, as such, a fraction of the collection of particles in any lattice grid cell to be updated in a time step, rather than the entire collection of particles as in the standard LBM-CA algorithm leading to a better representation of the dynamic interaction between the particles and the background flow). Exploitation of the inherent parallelism of the modified LBM-CA algorithm to provide a computationally efficient scheme for computation of particle-laden flows on readily available commodity general-purpose graphics processing units (GPGPUs).

Design/methodology/approach

This paper presents a framework for the implementation of a LBM for the simulation of particle transport and deposition in complex flows on a GPGPU. Towards this objective, the authors have shown how to map the data structure of the LBM with a multiple-relaxation-time (MRT) collision operator and the Smagorinsky subgrid-scale turbulence model (for turbulent fluid flow simulations) coupled with a CA probabilistic method (for particle transport and deposition simulations) to a GPGPU to give a high-performance computing tool for the calculation of particle-laden flows.

Findings

A fluid-particle simulation using our LBM-MRT-CA algorithm run on a single GPGPU was 160 times as computationally efficient as the same algorithm run on a single CPU.

Research limitations/implications

The method is limited by the available computational resources (e.g. GPU memory size).

Originality/value

A new 3D LBM-MRT-CA model was developed to simulate the particle transport and deposition in complex laminar and turbulent flows with different hydrodynamic characteristics (e.g. vortex shedding, impingement, free shear layer, turbulent boundary layer). The solid particle information is encapsulated locally at the lattice grid nodes, allowing for straightforward mapping of the datastructure onto a GPGPU enabling a massive parallel execution of the LBM-MRT-CA algorithm. The new particle transport algorithm was based on the local (bulk) particle density and velocity and provides more realistic results for the particle transport and deposition than the standard LBM-CA algorithm.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 7 November 2016

Zhanhong Wan, Zongfu Ren, Xiaochun Wang and Honghao Zheng

To observe the relations between three important factors resulting in estuarial Hypoxia phenomena of Yangtze River – wind, river flow, and stratification. The purpose of the paper…

Abstract

Purpose

To observe the relations between three important factors resulting in estuarial Hypoxia phenomena of Yangtze River – wind, river flow, and stratification. The purpose of the paper is to analyze the possible reasons why hypoxia occurs in late spring and disappears in October.

Design/methodology/approach

To overcome the difficulty in examining the role of physical and biological factors affecting hypoxia based on measurement alone, finite-volume community ocean model (FVCOM) was introduced into the investigation. Observed freshwater flux data from Yangtze River, monthly averaged wind speed data, and other observed data were input into the model; the accuracy of which was validated with various kinds of data. The authors used the trajectories of Lagrangian particles from Yangtze River to study the regions of strong riverine influence under different wind forcing conditions and compared the simulation results with former observations.

Findings

Trade wind is a significant factor to influence the forming and receding of hypoxia across the Yangtze River.

Originality/value

Using FVCOM to investigate estuary hypoxia is more economical and effective.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 26 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 20 September 2019

Hongmei Liu and Tat Leung Chan

The purpose of this paper is to study the evolution and growth of aerosol particles in a turbulent planar jet by using the newly developed large eddy simulation…

187

Abstract

Purpose

The purpose of this paper is to study the evolution and growth of aerosol particles in a turbulent planar jet by using the newly developed large eddy simulation (LES)-differentially weighted operator splitting Monte Carlo (DWOSMC) method.

Design/methodology/approach

The DWOSMC method is coupled with LES for the numerical simulation of aerosol dynamics in turbulent flows.

Findings

Firstly, the newly developed and coupled LES-DWOSMC method is verified by the results obtained from a direct numerical simulation-sectional method (DNS-SM) for coagulation occurring in a turbulent planar jet from available literature. Then, the effects of jet temperature and Reynolds number on the evolution of time-averaged mean particle diameter, normalized particle number concentration and particle size distributions (PSDs) are studied numerically on both coagulation and condensation processes. The jet temperature and Reynolds number are shown to be two important parameters that can be used to control the evolution and pattern of PSD in an aerosol reactor.

Originality/value

The coupling between the Monte Carlo method and turbulent flow still encounters many technical difficulties. In addition, the relationship between turbulence, particle properties and collision kernels of aerosol dynamics is not yet well understood due to the theoretical limitations and experimental difficulties. In the present study, the developed and coupled LES-DWOSMC method is capable of solving the aerosol dynamics in turbulent flows.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 7 March 2008

V. Bojarevics and K. Pericleous

A small size cold crucible offers possibilities for melting various electrically conducting materials with a minimal wall contact. Such small samples can be used for express…

Abstract

Purpose

A small size cold crucible offers possibilities for melting various electrically conducting materials with a minimal wall contact. Such small samples can be used for express contamination analysis, preparing limited amounts of reactive alloys or experimental material analyses. Aims to present a model to follow the melting process.

Design/methodology/approach

The presents a numerical model in which different types of axisymmetric coil configurations are analysed.

Findings

The presented numerical model permits dynamically to follow the melting process, the high‐frequency magnetic field distribution change, the free surface and the melting front evolution, and the associated turbulent fluid dynamics. The partially solidified skin on the contact to the cold crucible walls and bottom is dynamically predicted. The segmented crucible shape is either cylindrical, hemispherical or arbitrary shaped.

Originality/value

The model presented within the paper permits the analysis of melting times, melt shapes, electrical efficiency and particle tracks.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 27 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 5 December 2022

Srinivas M.V.V., Mudragada Hari Surya, Devendra Pratap Singh, Pratibha Biswal and Sathi Rajesh Reddy

The purpose of this study is to explore the mist-air film cooling performance on a three-dimensional (3-D) flat plate. In mist-air film cooling technique, a small amount of water…

Abstract

Purpose

The purpose of this study is to explore the mist-air film cooling performance on a three-dimensional (3-D) flat plate. In mist-air film cooling technique, a small amount of water droplets is injected along with the coolant air. The objective is to study the influence of shape of the coolant hole and operating conditions on the cooling effectiveness.

Design/methodology/approach

In this study, 3-D numerical simulations are performed. To simulate the mist-air film cooling over a flat plate, air is considered as a continuous phase and mist is considered as a discrete phase. Turbulence in the flow is accounted using Reynolds averaged Navier–Stokes equation and is modeled using k–e model with enhanced wall treatment.

Findings

The results of this study show that, for cylindrical coolant hole, coolant with 5% mist concentration is not effective for mainstream temperatures above 600 K, whereas for fan-shaped hole, even 2% mist concentration has shown significant impact on cooling effectiveness for temperatures up to 1,000 K. For given mist-air coolant flow conditions, different trend in effectiveness is observed for cylindrical and fan-shaped coolant hole with respect to main stream temperature.

Research limitations/implications

This study is limited to a flat plate geometry with single coolant hole.

Practical implications

The motivation of this study comes from the requirement of high efficiency cooling techniques for cooling of gas turbine blades. This study aims to study the performance of mist-air film cooling at different geometric and operating conditions.

Originality/value

The originality of this study lies in studying the effect of parameters such as mist concentration, droplet size and blowing ratio on cooling performance, particularly at high mainstream temperatures. In addition, a systematic performance comparison is presented between the cylindrical and fan-shaped cooling hole geometries.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 2 May 2017

Ray O. Prather, Alain Kassab, Marcus William Ni, Eduardo Divo, Ricardo Argueta-Morales and William M. DeCampli

Predictive models implemented in medical procedures can potentially bring great benefit to patients and represent a step forward in targeted treatments based on a patient’s…

Abstract

Purpose

Predictive models implemented in medical procedures can potentially bring great benefit to patients and represent a step forward in targeted treatments based on a patient’s physiological condition. It is the purpose of this paper to outline such a model.

Design/methodology/approach

A multi-scale 0D-3D model based on patient specific geometry combines a 0-dimensional lumped parameter model (LPM) with a 3D computational fluid dynamics (CFD) analysis coupled in time, to obtain physiologically viable flow parameters.

Findings

A comparison of physiological data gathered from literature with flow-field measurements in this model shows the viability of this method in relation to potential predictions of pathological flows repercussions and candidate treatments.

Research limitations/implications

A limitation of the model is the absence of compliance in the walls in the CFD fluid domain; however, compliance of the peripheral vasculature is accounted for by the LPM. Currently, an attempt is in progress to extend this multi-scale model to account for the fluid-structure interaction of the ventricular assist device vasculature and hemodynamics.

Originality/value

This work reports on a predictive pulsatile flow model that can be used to investigate surgical alternatives to reduce strokes in LVADs.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 224