Search results

1 – 10 of 24
Article
Publication date: 5 September 2022

Changgeng Zhang, Lan Yang and Yongjian Li

The purpose of this study is to investigate the effect of punching on the local magnetic properties of the nonoriented electrical steel sheet.

Abstract

Purpose

The purpose of this study is to investigate the effect of punching on the local magnetic properties of the nonoriented electrical steel sheet.

Design/methodology/approach

A microcomposite B–H sensor consisting of a pair of B probes with a spacing of 2 mm and a 1.8 × 1.8 mm2 H coil is designed. The region and degree of local magnetic properties degradation caused by punching can be quantitatively analyzed by flexibly moving the composite B–H sensor. The influence and physical mechanism of punching on the hysteresis loss, eddy current loss and excess loss are analyzed based on the Bertotti loss separation theory.

Findings

This study investigates the deterioration effect of the punched nonoriented electrical steel. The permeability near the edge decreases, and the core loss as well as the microhardness increases. The region of magnetic property deterioration is dependent on the area of work hardening.

Originality/value

The microcomposite B–H sensor can be used to measure the magnetic properties near the edge of electrical steel sheets under different processing conditions. This study provides the possibility of precise magnetic property model of the motor core after punching, especially valuable for motors without annealing process.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 September 1999

János Füzi

A fast dynamic hysteresis model is constructed based on the classical Preisach model and a differential equation which delays its input with respect to the actual value to…

Abstract

A fast dynamic hysteresis model is constructed based on the classical Preisach model and a differential equation which delays its input with respect to the actual value to encompass dynamic effects such as eddy currents and domain wall displacement. It is applied to describe the magnetic behaviour of both grain oriented and nonoriented electrical steel sheets. The results of numerical simulations are compared to experiment and power loss prediction is performed.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 18 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 March 2023

Mohamed Amine Hebri, Abderrahmane Rebhaoui, Gregory Bauw, Jean-Philippe Lecointe, Stéphane Duchesne, Gianluca Zito, Abdelli Abdenour, Victor Mediavilla Santos, Vincent Mallard and Adrien Maier

The purpose of this paper is to exploit the optimal performances of each magnetic material in terms of low iron losses and high saturation flux density to improve the efficiency…

Abstract

Purpose

The purpose of this paper is to exploit the optimal performances of each magnetic material in terms of low iron losses and high saturation flux density to improve the efficiency and the power density of the selected motor.

Design/methodology/approach

This paper presents a study to improve the power density and efficiency of e-motors for electric traction applications with high operating speed. The studied machine is a yokeless-stator axial flux permanent magnet synchronous motor with a dual rotor. The methodology consists in using different magnetic materials for an optimal design of the stator and rotor magnetic circuits to improve the motor performance. The candidate magnetic materials, adapted to the constraints of e-mobility, are made of thin laminations of Si-Fe nonoriented grain electrical steel, Si-Fe grain-oriented electrical steel (GOES) and iron-cobalt Permendur electrical steel (Co-Fe).

Findings

The mixed GOES-Co-Fe structure allows to reach 10 kW/kg in rated power density and a high efficiency in city driving conditions. This structure allows to make the powertrain less energy consuming in the battery electric vehicles and to reduce CO2 emissions in hybrid electric vehicles.

Originality/value

The originality of this study lies in the improvement of both power density and efficiency of the electric motor in automotive application by using different magnetic materials through a multiobjective optimization.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 14 November 2008

A. Belahcen and A. Arkkio

The purpose of this paper is to find out how to model the effect of mechanical stresses on the magnetic properties of electrical steel used in electromagnetic devices and…

Abstract

Purpose

The purpose of this paper is to find out how to model the effect of mechanical stresses on the magnetic properties of electrical steel used in electromagnetic devices and especially in electrical machines. Further, the effect of these stresses on the operation of the machines should be studied.

Design/methodology/approach

The constitutive equation of the electrical steel is usually modeled as a non linear relation between the magnetic flux density and the magnetic field strength. In this research, this constitutive equation is developed to account for the mechanical stresses through a parametric relationship, the parameters of which are estimated from measurements. Further, the constitutive equation is used in a magnetomechanically coupled numerical simulation of an induction machine.

Findings

The mechanical stresses degrade the properties of the electrical steel and increase the magnetization current in electrical machines. This leads to a decrease in the efficiency of these machines.

Research limitations/implications

The effect of mechanical stresses is studied from the point of view of magnetization properties. This work does not model the effect of stresses on the specific losses of the material. Such a research is still going on.

Originality/value

The effect of mechanical stress on the magnetic properties of the materials used in electrical machines is modeled in an easy and original way, which allow for its application in numerical simulation and analysis of these machines.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 27 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 8 September 2022

Yongjian Li, Kai Zhang, Yu Dou, Zhiwei Lin, Yu Fu and Changgeng Zhang

In rotational alternating current machines, interlocking is a commonly used manufacturing method to fix laminated silicon steel cores. The purpose of this study is to measure the…

Abstract

Purpose

In rotational alternating current machines, interlocking is a commonly used manufacturing method to fix laminated silicon steel cores. The purpose of this study is to measure the localized magnetic properties more comprehensively and to analyze the deteriorated magnetic properties caused by interlocking more accurately.

Design/methodology/approach

A movable B–H sensor is designed in this paper. The localized magnetic properties measurement was performed to investigate the magnetic properties around the interlocks with various sizes, various orientations and various numbers of laminations. Then, the damaged area caused by the interlocking was quantified, and the magnetic degradation of different degrees is layered.

Findings

The measurement results have shown that the interlocks with larger sizes, along the transverse direction and on 10-layer laminate, will lead to more serious magnetic degradation, and the maximum loss increment can reach up to 70%.

Originality/value

This work is an improvement and optimization based on the previous overall magnetic measurement of the interlock. The quantitative results of the localized magnetic measurement will have a certain significance for the accurate modeling and simulation of the electrical machines and provide valuable guidance for the optimization of the actual production process of the motor.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 31 October 2022

Yulin Li, Jiabao Wang, Hang Zhang and Ruilin Pei

The purpose of the paper is to make a high speed motor based on the characteristics of high strength silicon steel. With the higher requirements for torque density and power…

Abstract

Purpose

The purpose of the paper is to make a high speed motor based on the characteristics of high strength silicon steel. With the higher requirements for torque density and power density of the driving system of electric vehicles (EV), conventional magnetic materials have been difficult to meet the demands in the future. In this paper, a new type of high-strength non-grain-oriented (NGO)material is tested.

Design/methodology/approach

Through analyzing the characteristic of high strength silicon steel, it is applied to the rotor part of a high-speed motor. A topological optimization is applied to achieve higher power density and higher efficiency of the motor.

Findings

The feasibility of the scheme was analyzed by the finite element method, and a prototype was also fabricated to verify the analysis.

Originality/value

In this paper, the characteristics of new soft magnetic materials as a breakthrough to manufacture a new generation of high-performance electrical machine (EM) are discussed. Consequently, the presented work greatly facilitates further explorations and guides the innovative application of soft magnetic materials and the iterative optimization of motor structure.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 16 May 2022

Mengxing Li, YanLi Zhang, Ying Jing, Zhen Wang and Dexin Xie

The purpose of this paper is to improve the modeling accuracy of the magnetostrictive hysteretic characteristics by introducing hysteresis energy instead of pinning energy in the…

Abstract

Purpose

The purpose of this paper is to improve the modeling accuracy of the magnetostrictive hysteretic characteristics by introducing hysteresis energy instead of pinning energy in the assembled domain structure model (ADSM).

Design/methodology/approach

First, the magnetostrictive characteristics and the domain movement process in an electrical steel sheet are measured and observed. The reasons for the influence of stress on magnetostriction are discussed on the mesoscopic level. Second, the ADSM model using the hysteresis energy is investigated to estimate the influence of external stress. Finally, the simulation results of the modified ADSM model are compared with the experimental data under the same calculation conditions.

Findings

The results show that the improved model not only explains the cause of hysteresis clearly from the perspective of the magnetic moment but also improves the modeling ability of magnetostrictive hysteretic.

Originality/value

The magnetostriction in electrical steel lags behind the external magnetic field, and it is significant for reducing core vibration to estimate the magnetostrictive hysteretic property accurately. This paper proposes an effective approach to model the hysteretic characterization of magnetostriction.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 January 2014

Baodong Bai and Jiayin Wang

The magnetostriction of grain-oriented electrical silicon steel sheet is studied for the magnetic field direction along the rolling direction and deviating from it. The method of…

Abstract

Purpose

The magnetostriction of grain-oriented electrical silicon steel sheet is studied for the magnetic field direction along the rolling direction and deviating from it. The method of calculating the vibration of transformer is developed through COMSOL. The paper aims to discuss these issues.

Design/methodology/approach

Measurements of signals of magnetostriction and magnetic polarization, and calculation through software.

Findings

The angle between the magnetic field direction and the rolling direction does a great influence on magnetostriction strain.

Originality/value

The maximum λ p-p of transversal magnetostriction is above 30 times more than the value when the angle is 0°. The transversal magnetostriction is a main reason of vibration increasing at the corner of transformer.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 33 no. 1/2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 6 November 2017

Yanli Zhang, Hang Zhou, Dianhai Zhang, Ziyan Ren and Dexin Xie

This paper aims to investigate the magnetostrictive phenomenon in a single electrical steel sheet, which may cause vibration and noise in the cores of transformers and induction…

Abstract

Purpose

This paper aims to investigate the magnetostrictive phenomenon in a single electrical steel sheet, which may cause vibration and noise in the cores of transformers and induction motors. A measurement system of magnetostriction is created and the principal strain of magnetostriction is modeled. Furthermore, the magnetostriction property along arbitrary alternating magnetization directions is modeled.

Design/methodology/approach

A measurement system with a triaxial strain gauge is developed to obtain the magnetostrictive waveform, and the principal strain is computed in terms of the in-plane strain formula. A three-layer feed-forward neural network model is proposed to model the measured magnetostriction property of the electrical steel sheet.

Findings

The principal strain of magnetostriction of the non-oriented electrical steel has strong anisotropy. The proposed estimation model can be effectively used to model the anisotropic magnetostriction with an acceptable prediction time.

Originality/value

This paper develops the neural network combined with fast Fourier transform (FFT) to model the principal strain property of magnetostriction under alternating magnetizations, and its validation has been verified.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 36 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 2 May 2017

Alejandro Garza-Caballero, Gina Idárraga-Ospina, Nora A. García-Gomez, Francisco Aurelio Pérez-González, Maribel De-la-Garza-Garza, Alfredo Artigas, Alberto Monsalve, Rafael Colás and Nelson Federico Garza-Montes-de-Oca

High silicon amorphous steels are gaining preference as the material of choice for the fabrication of the core of low and medium power electrical transformers because they present…

Abstract

Purpose

High silicon amorphous steels are gaining preference as the material of choice for the fabrication of the core of low and medium power electrical transformers because they present a better electromagnetic behaviour compared to that offered by common grain-oriented and non-oriented high silicon steels. This study aims to investigate the effects that the environmental conditions present during the high temperature annealing of cores exert on the surface oxidation and electromagnetic changes experienced by a commercial amorphous steel alloy.

Design/methodology/approach

The effect of environmental impact on the correct development of annealing practices during the manufacture process of amorphous steel cores used in distribution transformers was studied by the development of an oxidation reactor. With this installation, it was possible to simulate environmental conditions that could affect the surface of magnetic cores made from amorphous steel.

Findings

It was found that: the surface oxidation of amorphous steels affects their electromagnetic behaviour, environmentally induced surface degradation can be modelled at laboratory scale and oxide formation does not affect the amorphous condition of the alloy.

Originality/value

The effect of surface oxidation induced by the existence of water vapour in the annealing process of cores made from amorphous steels and its impact on the electromagnetic behavior of these alloys has been barely studied.

Details

Anti-Corrosion Methods and Materials, vol. 64 no. 3
Type: Research Article
ISSN: 0003-5599

Keywords

1 – 10 of 24