Search results

1 – 10 of 373
Article
Publication date: 2 May 2024

Gerasimos G. Rigatos

To provide high torques needed to move a robot’s links, electric actuators are followed by a transmission system with a high transmission rate. For instance, gear ratios of 100:1…

Abstract

Purpose

To provide high torques needed to move a robot’s links, electric actuators are followed by a transmission system with a high transmission rate. For instance, gear ratios of 100:1 are often used in the joints of a robotic manipulator. This results into an actuator with large mechanical impedance (also known as nonback-drivable actuator). This in turn generates high contact forces when collision of the robotic mechanism occur and can cause humans’ injury. Another disadvantage of electric actuators is that they can exhibit overheating when constant torques have to be provided. Comparing to electric actuators, pneumatic actuators have promising properties for robotic applications, due to their low weight, simple mechanical design, low cost and good power-to-weight ratio. Electropneumatically actuated robots usually have better friction properties. Moreover, because of low mechanical impedance, pneumatic robots can provide moderate interaction forces which is important for robotic surgery and rehabilitation tasks. Pneumatic actuators are also well suited for exoskeleton robots. Actuation in exoskeletons should have a fast and accurate response. While electric motors come against high mechanical impedance and the risk of causing injuries, pneumatic actuators exhibit forces and torques which stay within moderate variation ranges. Besides, unlike direct current electric motors, pneumatic actuators have an improved weight-to-power ratio and avoid overheating problems.

Design/methodology/approach

The aim of this paper is to analyze a nonlinear optimal control method for electropneumatically actuated robots. A two-link robotic exoskeleton with electropneumatic actuators is considered as a case study. The associated nonlinear and multivariable state-space model is formulated and its differential flatness properties are proven. The dynamic model of the electropneumatic robot is linearized at each sampling instance with the use of first-order Taylor series expansion and through the computation of the associated Jacobian matrices. Within each sampling period, the time-varying linearization point is defined by the present value of the robot’s state vector and by the last sampled value of the control inputs vector. An H-infinity controller is designed for the linearized model of the robot aiming at solving the related optimal control problem under model uncertainties and external perturbations. An algebraic Riccati equation is solved at each time-step of the control method to obtain the stabilizing feedback gains of the H-infinity controller. Through Lyapunov stability analysis, it is proven that the robot’s control scheme satisfies the H-infinity tracking performance conditions which indicate the robustness properties of the control method. Moreover, global asymptotic stability is proven for the control loop. The method achieves fast convergence of the robot’s state variables to the associated reference trajectories, and despite strong nonlinearities in the robot’s dynamics, it keeps moderate the variations of the control inputs.

Findings

In this paper, a novel solution has been proposed for the nonlinear optimal control problem of robotic exoskeletons with electropneumatic actuators. As a case study, the dynamic model of a two-link lower-limb robotic exoskeleton with electropneumatic actuators has been considered. The dynamic model of this robotic system undergoes first approximate linearization at each iteration of the control algorithm around a temporary operating point. Within each sampling period, this linearization point is defined by the present value of the robot’s state vector and by the last sampled value of the control inputs vector. The linearization process relies on first-order Taylor series expansion and on the computation of the associated Jacobian matrices. The modeling error which is due to the truncation of higher-order terms from the Taylor series is considered to be a perturbation which is asymptotically compensated by the robustness of the control algorithm. To stabilize the dynamics of the electropneumatically actuated robot and to achieve precise tracking of reference setpoints, an H-infinity (optimal) feedback controller is designed. Actually, the proposed H-infinity controller for the model of the two-link electropneumatically actuated exoskeleton achieves the solution of the associated optimal control problem under model uncertainty and external disturbances. This controller implements a min-max differential game taking place between: (i) the control inputs which try to minimize a cost function which comprises a quadratic term of the state vector’s tracking error and (ii) the model uncertainty and perturbation inputs which try to maximize this cost function. To select the stabilizing feedback gains of this H-infinity controller, an algebraic Riccati equation is being repetitively solved at each time-step of the control method. The global stability properties of the H-infinity control scheme are proven through Lyapunov analysis.

Research limitations/implications

Pneumatic actuators are characterized by high nonlinearities which are due to air compressibility, thermodynamics and valves behavior and thus pneumatic robots require elaborated nonlinear control schemes to ensure their fast and precise positioning. Among the control methods which have been applied to pneumatic robots, one can distinguish differential geometric approaches (Lie algebra-based control, differential flatness theory-based control, nonlinear model predictive control [NMPC], sliding-mode control, backstepping control and multiple models-based fuzzy control). Treating nonlinearities and fault tolerance issues in the control problem of robotic manipulators with electropneumatic actuators has been a nontrivial task.

Practical implications

The novelty of the proposed control method is outlined as follows: preceding results on the use of H-infinity control to nonlinear dynamical systems were limited to the case of affine-in-the-input systems with drift-only dynamics. These results considered that the control inputs gain matrix is not dependent on the values of the system’s state vector. Moreover, in these approaches the linearization was performed around points of the desirable trajectory, whereas in the present paper’s control method the linearization points are related with the value of the state vector at each sampling instance as well as with the last sampled value of the control inputs vector. The Riccati equation which has been proposed for computing the feedback gains of the controller is novel, so is the presented global stability proof through Lyapunov analysis. This paper’s scientific contribution is summarized as follows: (i) the presented nonlinear optimal control method has improved or equally satisfactory performance when compared against other nonlinear control schemes that one can consider for the dynamic model of robots with electropneumatic actuators (such as Lie algebra-based control, differential flatness theory-based control, nonlinear model-based predictive control, sliding-mode control and backstepping control), (ii) it achieves fast and accurate tracking of all reference setpoints, (iii) despite strong nonlinearities in the dynamic model of the robot, it keeps moderate the variations of the control inputs and (iv) unlike the aforementioned alternative control approaches, this paper’s method is the only one that achieves solution of the optimal control problem for electropneumatic robots.

Social implications

The use of electropneumatic actuation in robots exhibits certain advantages. These can be the improved weight-to-power ratio, the lower mechanical impedance and the avoidance of overheating. At the same time, precise positioning and accurate execution of tasks by electropneumatic robots requires the application of elaborated nonlinear control methods. In this paper, a new nonlinear optimal control method has been developed for electropneumatically actuated robots and has been specifically applied to the dynamic model of a two-link robotic exoskeleton. The benefit from using this paper’s results in industrial and biomedical applications is apparent.

Originality/value

A comparison of the proposed nonlinear optimal (H-infinity) control method against other linear and nonlinear control schemes for electropneumatically actuated robots shows the following: (1) Unlike global linearization-based control approaches, such as Lie algebra-based control and differential flatness theory-based control, the optimal control approach does not rely on complicated transformations (diffeomorphisms) of the system’s state variables. Besides, the computed control inputs are applied directly on the initial nonlinear model of the electropneumatic robot and not on its linearized equivalent. The inverse transformations which are met in global linearization-based control are avoided and consequently one does not come against the related singularity problems. (2) Unlike model predictive control (MPC) and NMPC, the proposed control method is of proven global stability. It is known that MPC is a linear control approach that if applied to the nonlinear dynamics of the electropneumatic robot, the stability of the control loop will be lost. Besides, in NMPC the convergence of its iterative search for an optimum depends on initialization and parameter values selection and consequently the global stability of this control method cannot be always assured. (3) Unlike sliding-mode control and backstepping control, the proposed optimal control method does not require the state-space description of the system to be found in a specific form. About sliding-mode control, it is known that when the controlled system is not found in the input-output linearized form the definition of the sliding surface can be an intuitive procedure. About backstepping control, it is known that it cannot be directly applied to a dynamical system if the related state-space model is not found in the triangular (backstepping integral) form. (4) Unlike PID control, the proposed nonlinear optimal control method is of proven global stability, the selection of the controller’s parameters does not rely on a heuristic tuning procedure, and the stability of the control loop is assured in the case of changes of operating points. (5) Unlike multiple local models-based control, the nonlinear optimal control method uses only one linearization point and needs the solution of only one Riccati equation so as to compute the stabilizing feedback gains of the controller. Consequently, in terms of computation load the proposed control method for the electropneumatic actuator’s dynamics is much more efficient.

Details

Robotic Intelligence and Automation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 19 April 2024

Oguzhan Ozcelebi, Jose Perez-Montiel and Carles Manera

Might the impact of the financial stress on exchange markets be asymmetric and exposed to regime changes? Departing from the existing literature, highlighting that the domestic…

15

Abstract

Purpose

Might the impact of the financial stress on exchange markets be asymmetric and exposed to regime changes? Departing from the existing literature, highlighting that the domestic and foreign financial stress in terms of money market have substantial effects on exchange market, this paper aims to investigate the impacts of the bond yield spreads of three emerging countries (Mexico, Russia, and South Korea) on their exchange market pressure indices using monthly observations for the period 2010:01–2019:12. Additionally, the paper analyses the impact of bond yield spread of the US on the exchange market pressure indices of the three mentioned emerging countries. The authors hypothesized whether the negative and positive changes in the bond yield spreads have varying effects on exchange market pressure indices.

Design/methodology/approach

To address the research question, we measure the bond yield spread of the selected countries by using the interest rate spread between 10-year and 3-month treasury bills. At the same time, the exchange market pressure index is proxied by the index introduced by Desai et al. (2017). We base the empirical analysis on nonlinear vector autoregression (VAR) models and an asymmetric quantile-based approach.

Findings

The results of the impulse response functions indicate that increases/decreases in the bond yield spreads of Mexico, Russia and South Korea raise/lower their exchange market pressure, and the effects of shocks in the bond yield spreads of the US also lead to depreciation/appreciation pressures in the local currencies of the emerging countries. The quantile connectedness analysis, which allows for the role of regimes, reveals that the weights of the domestic and foreign bond yield spread in explaining variations of exchange market pressure indices are higher when exchange market pressure indices are not in a normal regime, indicating the role of extreme development conditions in the exchange market. The quantile regression model underlines that an increase in the domestic bond yield spread leads to a rise in its exchange market pressure index during all exchange market pressure periods in Mexico, and the relevant effects are valid during periods of high exchange market pressure in Russia. Our results also show that Russia differs from Mexico and South Korea in terms of the factors influencing the demand for domestic currency, and we have demonstrated the role of domestic macroeconomic and financial conditions in surpassing the effects of US financial stress. More specifically, the impacts of the domestic and foreign financial stress vary across regimes and are asymmetric.

Originality/value

This study enriches the literature on factors affecting the exchange market pressure of emerging countries. The results have significant economic implications for policymakers, indicating that the exchange market pressure index may trigger a financial crisis and economic recession.

Details

International Journal of Emerging Markets, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1746-8809

Keywords

Article
Publication date: 16 April 2024

Chaofan Wang, Yanmin Jia and Xue Zhao

Prefabricated columns connected by grouted sleeves are increasingly used in practical projects. However, seismic fragility analyses of such structures are rarely conducted…

Abstract

Purpose

Prefabricated columns connected by grouted sleeves are increasingly used in practical projects. However, seismic fragility analyses of such structures are rarely conducted. Seismic fragility analysis has an important role in seismic hazard evaluation. In this paper, the seismic fragility of sleeve connected prefabricated column is analyzed.

Design/methodology/approach

A model for predicting the seismic demand on sleeve connected prefabricated columns has been created by incorporating engineering demand parameters (EDP) and probabilities of seismic failure. The incremental dynamics analysis (IDA) curve clusters of this type of column were obtained using finite element analysis. The seismic fragility curve is obtained by regression of Exponential and Logical Function Model.

Findings

The IDA curve cluster gradually increased the dispersion after a peak ground acceleration (PGA) of 0.3 g was reached. For both columns, the relative displacement of the top of the column significantly changed after reaching 50 mm. The seismic fragility of the prefabricated column with the sleeve placed in the cap (SPCA) was inadequate.

Originality/value

The sleeve was placed in the column to overcome the seismic fragility of prefabricated columns effectively. In practical engineering, it is advisable to utilize these columns in regions susceptible to earthquakes and characterized by high seismic intensity levels in order to mitigate the risk of structural damage resulting from ground motion.

Details

International Journal of Structural Integrity, vol. 15 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 9 May 2024

Mohammad A. Gharaibeh and Jürgen Wilde

In power electronics, there are various metallic material systems used as die attachments. The complete understanding of the thermomechanical behavior of such interconnections is…

Abstract

Purpose

In power electronics, there are various metallic material systems used as die attachments. The complete understanding of the thermomechanical behavior of such interconnections is very important. Therefore, this paper aims to examine the thermomechanical response of four famous die attach materials, including sintered silver, sintered nano-copper particles, gold-tin solders and silver-tin transient liquid phase (TLP) bonds, using nonlinear finite element analysis.

Design/methodology/approach

During the study, the mechanical properties of all die attach systems, including elastic and viscoplasticity parameters, are obtained from literature studies and hence incorporated into the numerical analysis. Subsequently, the bond stress–strain relationships, stored inelastic strain energies and equivalent plastic strains are thoroughly examined.

Findings

The results showed that the silver-tin TLP bonds are more likely to develop higher inelastic strain energy densities, while the sintered silver and copper interconnects would possess higher plastic strains and deformations. Suggesting higher damage to such metallic die attachments. The expensive gold-based solders have developed least inelastic strain energy densities and least plastic strains as well. Thus, they are expected to have improved fatigue performance compared to other bonding configurations.

Originality/value

This paper extensively investigates and compares the mechanical and thermal response of various metallic die attachments. In fact, there are no available research studies that discuss the behavior of such important die attachments of power electronics when exposed to mechanical and thermomechanical loads.

Details

Soldering & Surface Mount Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 19 April 2024

Carmelita Wenceslao Amistad and Daryl Ace Cornell

This study aims to determine the effects of lodging infrastructure development (LID) on Cordillera Administrative Region’s (CAR) environmental quality and natural resource…

Abstract

Purpose

This study aims to determine the effects of lodging infrastructure development (LID) on Cordillera Administrative Region’s (CAR) environmental quality and natural resource management and its implication to globally responsible leadership. Specifically, this study sought to determine the contribution of LID to environmental deterioration and natural resource degradation in the CAR. As a result, a mathematical model is developed, which supports sustainability practices to maintain the environmental quality and natural resource management in CAR, Philippines.

Design/methodology/approach

This study used a descriptive research design using a mixed-methods approach. Self-structured interview and survey were used to gather the data. The population of this study involved three groups. There were 6.28% (34) experts in the field for the qualitative data, 70.24% (380) respondents for the quantitative data and 23.47% (127) from the lodging establishments. 120 respondents from the Department of Tourism – CAR (DOT-CAR) accredited hotels. Nonparametric and nonlinear regression analysis was used to process the data.

Findings

The effects of LID on the environmental quality and natural resource management in CAR as measured through carbon emission from liquefied petroleum gas (LPG), electricity and water consumption in the occupied guest rooms revealed a direct correlation between the LID. Findings conclude that the increase in tourist arrival is a trigger factor in the increase in LID in the CAR. The increase in LID implies a rise in carbon emission in the lodging infrastructure. Any increase in tourist arrivals increases lodging room occupancy; the increased lodging room occupancy contributes to carbon emissions. Thus, tourism trends contribute to the deterioration of the environmental quality and degradation of the natural resources in the CAR. A log-log model shows the percentage change in the average growth of tourist arrival and the percentage increase in carbon emissions. Establishments should observe standard room capacity to maintain the carbon emission of occupied lodging rooms at a minimum. Responsible leadership is a factor in the implementation of policy on standard room capacity.

Practical implications

The result of the study has some implications for the lodging businesses, the local government unit (LGU), the Department of Tourism (DOT) and the Department of Environment and Natural Resources (DENR) in the CAR. The study highlights the contribution of the lodging establishments to CO2 emission, which can degrade the quality of the environment, and the implication of responsible leadership in managing natural resources in the CAR. The direct inverse relationship between energy use and CO2 emission in hotels indicates that increased energy consumption leads to environmental degradation (Ahmad et al., 2018). Therefore, responsible leadership among policymakers in the lodging and government sectors – LGU, DOT and DENR – should abound in the CAR. Benchmarking on the model embarked from this study can help in designing and/or enhancing the policy on room capacity standardization, considering the total area with its maximum capacity to keep the carbon emission at a lower rate. Furthermore, as a responsible leader in the community, one should create programs that regulate the number of tourists visiting the place to decrease the number of overnight stays. Besides, having the political will to implement reduced room occupancy throughout the lodging establishments in CAR can help reduce the carbon emissions from the lodging businesses. After all, one of the aims of the International Environment Protection Organization is to reduce CO2 emissions in the tourism industry. Hence, responsible leadership in environmental quality preservation and sustainable natural resource management must help prevent and avoid greenhouse gas (GHG) emissions.

Originality/value

Most studies about carbon emission in the environment tackle about carbon dioxide emitted by transportation and factories. This study adds to the insights on the existing information about the carbon emission in the environment from the lodging establishments through the use of LPG, electricity and water consumption in the occupied guest rooms. The findings of the study open an avenue for globally responsible leadership in sustaining environmental quality and preservation of natural resources by revisiting and amending the policies on the number of room occupancy, guidelines and standardization, considering the total lodging area with its maximum capacity to keep the carbon emission at a minimum, thus contributing to the lowering of GHG emissions from the lodging industry.

Details

Journal of Global Responsibility, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2041-2568

Keywords

Open Access
Article
Publication date: 15 December 2023

Nicola Castellano, Roberto Del Gobbo and Lorenzo Leto

The concept of productivity is central to performance management and decision-making, although it is complex and multifaceted. This paper aims to describe a methodology based on…

Abstract

Purpose

The concept of productivity is central to performance management and decision-making, although it is complex and multifaceted. This paper aims to describe a methodology based on the use of Big Data in a cluster analysis combined with a data envelopment analysis (DEA) that provides accurate and reliable productivity measures in a large network of retailers.

Design/methodology/approach

The methodology is described using a case study of a leading kitchen furniture producer. More specifically, Big Data is used in a two-step analysis prior to the DEA to automatically cluster a large number of retailers into groups that are homogeneous in terms of structural and environmental factors and assess a within-the-group level of productivity of the retailers.

Findings

The proposed methodology helps reduce the heterogeneity among the units analysed, which is a major concern in DEA applications. The data-driven factorial and clustering technique allows for maximum within-group homogeneity and between-group heterogeneity by reducing subjective bias and dimensionality, which is embedded with the use of Big Data.

Practical implications

The use of Big Data in clustering applied to productivity analysis can provide managers with data-driven information about the structural and socio-economic characteristics of retailers' catchment areas, which is important in establishing potential productivity performance and optimizing resource allocation. The improved productivity indexes enable the setting of targets that are coherent with retailers' potential, which increases motivation and commitment.

Originality/value

This article proposes an innovative technique to enhance the accuracy of productivity measures through the use of Big Data clustering and DEA. To the best of the authors’ knowledge, no attempts have been made to benefit from the use of Big Data in the literature on retail store productivity.

Details

International Journal of Productivity and Performance Management, vol. 73 no. 11
Type: Research Article
ISSN: 1741-0401

Keywords

Article
Publication date: 11 April 2024

Everton Anger Cavalheiro, Kelmara Mendes Vieira and Pascal Silas Thue

This study probes the psychological interplay between investor sentiment and the returns of cryptocurrencies Bitcoin and Ethereum. Employing the Granger causality test, the…

Abstract

Purpose

This study probes the psychological interplay between investor sentiment and the returns of cryptocurrencies Bitcoin and Ethereum. Employing the Granger causality test, the authors aim to gauge how extensively the Fear and Greed Index (FGI) can predict cryptocurrency return movements, exploring the intricate bond between investor emotions and market behavior.

Design/methodology/approach

The authors used the Granger causality test to achieve research objectives. Going beyond conventional linear analysis, the authors applied Smooth Quantile Regression, scrutinizing weekly data from July 2022 to June 2023 for Bitcoin and Ethereum. The study focus was to determine if the FGI, an indicator of investor sentiment, predicts shifts in cryptocurrency returns.

Findings

The study findings underscore the profound psychological sway within cryptocurrency markets. The FGI notably predicts the returns of Bitcoin and Ethereum, underscoring the lasting connection between investor emotions and market behavior. An intriguing feedback loop between the FGI and cryptocurrency returns was identified, accentuating emotions' persistent role in shaping market dynamics. While associations between sentiment and returns were observed at specific lag periods, the nonlinear Granger causality test didn't statistically support nonlinear causality. This suggests linear interactions predominantly govern variable relationships. Cointegration tests highlighted a stable, enduring link between the returns of Bitcoin, Ethereum and the FGI over the long term.

Practical implications

Despite valuable insights, it's crucial to acknowledge our nonlinear analysis's sensitivity to methodological choices. Specifics of time series data and the chosen time frame may have influenced outcomes. Additionally, direct exploration of macroeconomic and geopolitical factors was absent, signaling opportunities for future research.

Originality/value

This study enriches theoretical understanding by illuminating causal dynamics between investor sentiment and cryptocurrency returns. Its significance lies in spotlighting the pivotal role of investor sentiment in shaping cryptocurrency market behavior. It emphasizes the importance of considering this factor when navigating investment decisions in a highly volatile, dynamic market environment.

Details

Review of Behavioral Finance, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1940-5979

Keywords

Open Access
Article
Publication date: 2 November 2023

Izabela Pruchnicka-Grabias, Iwona Piekunko-Mantiuk and Scott W. Hegerty

The Polish economy has undergone major challenges and changes over the past few decades. The country's trade flows, in particular, have become more firmly tied to the country’s…

Abstract

Purpose

The Polish economy has undergone major challenges and changes over the past few decades. The country's trade flows, in particular, have become more firmly tied to the country’s Western neighbors as they have grown in volume. This study examines Poland's trade balances in ten Standard International Trade Classification (SITC) sectors versus the United States of America, first testing for and isolating structural breaks in each time series. These breaks are then included in a set of the cointegration models to examine their macroeconomic determinants.

Design/methodology/approach

Linear and nonlinear and nonlinear autoregressive distributed lag models, both with and without dummies corresponding to structural breaks, are estimated.

Findings

One key finding is that incorporating these breaks reduces the significance of the real exchange rate in the model, supporting the hypothesis that this variable already incorporates important information. It also results in weaker evidence for cointegration of all variables in certain sectors.

Research limitations/implications

This study looks only at one pair of countries, without any third-country effects.

Originality/value

An important country pair's trade relations is examined; in addition, the real exchange rate is shown to incorporate economic information that results in structural changes in the economy. The paper extends the existing literature by conducting an analysis of Poland's trade balances with the USA, which have not been studied in such a context so far. A strong point is a broad methodology that lets compare the results the authors obtained with different kinds of models, both linear and nonlinear ones, with and without structural breaks.

Details

Central European Management Journal, vol. 32 no. 1
Type: Research Article
ISSN: 2658-0845

Keywords

Article
Publication date: 14 September 2023

Ishfaq Nazir Khanday, Md. Tarique, Inayat Ullah Wani and Muzffar Hussain Dar

The primary objective of the paper is to examine the asymmetric Cointegration and asymmetric causality between financial development and poverty alleviation on annual data in…

Abstract

Purpose

The primary objective of the paper is to examine the asymmetric Cointegration and asymmetric causality between financial development and poverty alleviation on annual data in Indian context over the period from 1980 to 2019.

Design/methodology/approach

First nonlinearity test by Brooks et al. (1999) is applied to ascertain the nonlinear behavior of the variables used. Once the nonlinear behavior of variables is confirmed, asymmetric and nonlinear unit root tests by Kapetanios and Shin (2008) are applied to check for the order of integration of selected variables. Next, nonlinear autoregressive distributed lag model (NARDL) is employed to analyze the asymmetric Cointegration. Finally, Hatemi-j- asymmetric causality tests is applied to work out the direction of asymmetric causality.

Findings

The empirical findings document the existence of asymmetries in the short-run as well as long-run between poverty and financial development. The asymmetry reveals that negative financial development shocks leave a more profound impact on poverty alleviation than their positive equivalents. The findings of Wald's test also confirm the presence of asymmetric Cointegration. The asymmetric cumulative dynamic multipliers used to examine the behavior of asymmetries and adjustments with respect to time lend credence to the results calculated using NARDL estimator. This result exhibits the robustness of the model. Furthermore, the result emanating from recently introduced asymmetric causality test reveals a unidirectional asymmetric causality between negative shocks in financial development and poverty. The findings of the present study necessitate the need for investigating asymmetric and nonlinear effects in finance–poverty nexus, which existent literature has completely neglected, in order to have relevant policy conclusions.

Research limitations/implications

The study used “Per capita consumption expenditure” as a measure for poverty due to lack of continuous time series data on headcount ratio. In future, researchers can extend this study by incorporating headcount ratio as a measure of poverty in their respective works. There is further scope of research on this issue by finding out the impact of formal and informal sources of credit on poverty separately. A panel data study for developing countries over a period of time could further confirm/negate the findings of the present study.

Originality/value

To the best of the authors’ knowledge none of the studies in Indian context has scrutinized asymmetric and nonlinear impact of financial development on poverty. To dredge up asymmetric structures at work, the authors have used the highly celebrated NARDL estimator. To enrich the existent body of knowledge along the lines of asymmetric (nonlinear) linkages, the authors have also used recently introduced asymmetric causality test by Hatemi-j-(2012) to find out the direction asymmetric causality.

Details

Journal of Economic Studies, vol. 51 no. 4
Type: Research Article
ISSN: 0144-3585

Keywords

Article
Publication date: 30 August 2022

Mouyad Alsamara, Karim Mimouni, Karim Barkat and Diana Kayaly

This paper aims to examine the effects of the real exchange rate on trade balance in Algeria and investigates whether it represents a viable tool to sustain and improve trade…

Abstract

Purpose

This paper aims to examine the effects of the real exchange rate on trade balance in Algeria and investigates whether it represents a viable tool to sustain and improve trade performance using the nonlinear autoregressive distributed lag (NARDL) estimation technique and data from Algeria over the period 1980–2018. This study also highlights the role of trading partners with large income endowments in enhancing the trade balance.

Design/methodology/approach

The NARDL model is used to unveil potential short and long run nonlinear responses of the trade balance to shocks in real exchange rates and detect whether these responses are different in terms of sign and magnitude. The paper also provides a dynamic multiplier analysis that tests the existence of a J-Curve pattern in Algeria with several policy recommendations.

Findings

The findings confirm the existence of a J-curve pattern in Algeria where domestic currency depreciation will worsen the trade balance in the short run and improve it in the long run. The authors also find that the asymmetrical effect of real exchange rate on trade balance is different in sign and magnitude. Finally, the results indicate that an increase in trade partners' income increases the trade balance in Algeria. The findings are of utmost importance with several policy implications.

Originality/value

While some works investigated the nonlinear response of trade balance to real exchange rate movements, their results remain inconclusive and seem to depend on the characteristics of the country/region of study. Moreover, the role of trade partners and their potential impact on trade balance has been relatively overlooked in the literature. The authors fill this gap by examining the asymmetric impacts of real exchange rate and the effect of trade partners' income on trade balance in Algeria.

Details

International Journal of Emerging Markets, vol. 19 no. 5
Type: Research Article
ISSN: 1746-8809

Keywords

1 – 10 of 373