Search results

1 – 10 of over 3000
Article
Publication date: 19 January 2024

Sobhan Pandit, Milan K. Mondal, Dipankar Sanyal, Nirmal K. Manna, Nirmalendu Biswas and Dipak Kumar Mandal

This study aims to undertake a comprehensive examination of heat transfer by convection in porous systems with top and bottom walls insulated and differently heated vertical walls…

Abstract

Purpose

This study aims to undertake a comprehensive examination of heat transfer by convection in porous systems with top and bottom walls insulated and differently heated vertical walls under a magnetic field. For a specific nanofluid, the study aims to bring out the effects of different segmental heating arrangements.

Design/methodology/approach

An existing in-house code based on the finite volume method has provided the numerical solution of the coupled nondimensional transport equations. Following a validation study, different explorations include the variations of Darcy–Rayleigh number (Ram = 10–104), Darcy number (Da = 10–5–10–1) segmented arrangements of heaters of identical total length, porosity index (ε = 0.1–1) and aspect ratio of the cavity (AR = 0.25–2) under Hartmann number (Ha = 10–70) and volume fraction of φ = 0.1% for the nanoparticles. In the analysis, there are major roles of the streamlines, isotherms and heatlines on the vertical mid-plane of the cavity and the profiles of the flow velocity and temperature on the central line of the section.

Findings

The finding of a monotonic rise in the heat transfer rate with an increase in Ram from 10 to 104 has prompted a further comparison of the rate at Ram equal to 104 with the total length of the heaters kept constant in all the cases. With respect to uniform heating of one entire wall, the study reveals a significant advantage of 246% rate enhancement from two equal heater segments placed centrally on opposite walls. This rate has emerged higher by 82% and 249%, respectively, with both the segments placed at the top and one at the bottom and one at the top. An increase in the number of centrally arranged heaters on each wall from one to five has yielded 286% rate enhancement. Changes in the ratio of the cavity height-to-length from 1.0 to 0.2 and 2 cause the rate to decrease by 50% and increase by 21%, respectively.

Research limitations/implications

Further research with additional parameters, geometries and configurations will consolidate the understanding. Experimental validation can complement the numerical simulations presented in this study.

Originality/value

This research contributes to the field by integrating segmented heating, magnetic fields and hybrid nanofluid in a porous flow domain, addressing existing research gaps. The findings provide valuable insights for enhancing thermal performance, and controlling heat transfer locally, and have implications for medical treatments, thermal management systems and related fields. The research opens up new possibilities for precise thermal management and offers directions for future investigations.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 28 February 2024

Yoonjae Hwang, Sungwon Jung and Eun Joo Park

Initiator crimes, also known as near-repeat crimes, occur in places with known risk factors and vulnerabilities based on prior crime-related experiences or information…

111

Abstract

Purpose

Initiator crimes, also known as near-repeat crimes, occur in places with known risk factors and vulnerabilities based on prior crime-related experiences or information. Consequently, the environment in which initiator crimes occur might be different from more general crime environments. This study aimed to analyse the differences between the environments of initiator crimes and general crimes, confirming the need for predicting initiator crimes.

Design/methodology/approach

We compared predictive models using data corresponding to initiator crimes and all residential burglaries without considering repetitive crime patterns as dependent variables. Using random forest and gradient boosting, representative ensemble models and predictive models were compared utilising various environmental factor data. Subsequently, we evaluated the performance of each predictive model to derive feature importance and partial dependence based on a highly predictive model.

Findings

By analysing environmental factors affecting overall residential burglary and initiator crimes, we observed notable differences in high-importance variables. Further analysis of the partial dependence of total residential burglary and initiator crimes based on these variables revealed distinct impacts on each crime. Moreover, initiator crimes took place in environments consistent with well-known theories in the field of environmental criminology.

Originality/value

Our findings indicate the possibility that results that do not appear through the existing theft crime prediction method will be identified in the initiator crime prediction model. Emphasising the importance of investigating the environments in which initiator crimes occur, this study underscores the potential of artificial intelligence (AI)-based approaches in creating a safe urban environment. By effectively preventing potential crimes, AI-driven prediction of initiator crimes can significantly contribute to enhancing urban safety.

Details

Archnet-IJAR: International Journal of Architectural Research, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2631-6862

Keywords

Article
Publication date: 15 July 2022

Radwa Tawfik, Sahar Attia, Ingy Mohamed Elbarmelgy and Tamer Mohamed Abdelaziz

Women's travel pattern is different from those of men. Women who have both paid employment and unpaid care work have more complex travel patterns. However, land-use policies and…

Abstract

Purpose

Women's travel pattern is different from those of men. Women who have both paid employment and unpaid care work have more complex travel patterns. However, land-use policies and urban mobility strategies in the Egyptian context do not consider these differences. This paper analyzes and discusses the travel patterns of the Egyptian working women with children. It examines the difference between men's and women's travel behavior in different income levels. The paper aims at determining the main factors that affect working women's travel patterns within the care economy framework and suggesting recommendations for enhancing women's travel patterns in Greater Cairo Region (GCR).

Design/methodology/approach

The methodology relies on conducting a quantitative and qualitative analysis using questionnaires and interviews with working women and men from different social/economic levels in two different workplaces in GCR.

Findings

The results demonstrate that income level, workplace locations, schools locations, and schools typologies greatly affect working women's travel patterns in GCR.

Originality/value

The study findings will help urban planners and decision-makers to improve working women's mobility to make their daily trips shorter and more accessible to achieve equitable cities through understanding the conducted affecting factors and considering the suggested recommendations.

Details

Archnet-IJAR: International Journal of Architectural Research, vol. 17 no. 4
Type: Research Article
ISSN: 2631-6862

Keywords

Article
Publication date: 23 January 2024

Md Motiur Rahaman, Nirmalendu Biswas, Apurba Kumar Santra and Nirmal K. Manna

This study aims to delve into the coupled mixed convective heat transport process within a grooved channel cavity using CuO-water nanofluid and an inclined magnetic field. The…

Abstract

Purpose

This study aims to delve into the coupled mixed convective heat transport process within a grooved channel cavity using CuO-water nanofluid and an inclined magnetic field. The cavity undergoes isothermal heating from the bottom, with variations in the positions of heated walls across the grooved channel. The aim is to assess the impact of heater positions on thermal performance and identify the most effective configuration.

Design/methodology/approach

Numerical solutions to the evolved transport equations are obtained using a finite volume method-based indigenous solver. The dimensionless parameters of Reynolds number (1 ≤ Re ≤ 500), Richardson number (0.1 ≤ Ri ≤ 100), Hartmann number (0 ≤ Ha ≤ 70) and magnetic field inclination angle (0° ≤ γ ≤ 180°) are considered. The solved variables generate both local and global variables after discretization using the semi-implicit method for pressure linked equations algorithm on nonuniform grids.

Findings

The study reveals that optimal heat transfer occurs when the heater is positioned at the right corner of the grooved cavity. Heat transfer augmentation ranges from 0.5% to 168.53% for Re = 50 to 300 compared to the bottom-heated case. The magnetic field’s orientation significantly influences the average heat transfer, initially rising and then declining with increasing inclination angle. Overall, this analysis underscores the effectiveness of heater positions in achieving superior thermal performance in a grooved channel cavity.

Research limitations/implications

This concept can be extended to explore enhanced thermal performance under various thermal boundary conditions, considering wall curvature effects, different geometry orientations and the presence of porous structures, either numerically or experimentally.

Practical implications

The findings are applicable across diverse fields, including biomedical systems, heat exchanging devices, electronic cooling systems, food processing, drying processes, crystallization, mixing processes and beyond.

Originality/value

This work provides a novel exploration of CuO-water nanofluid flow in mixed convection within a grooved channel cavity under the influence of an inclined magnetic field. The influence of different heater positions on thermomagnetic convection in such a cavity has not been extensively investigated before, contributing to the originality and value of this research.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 26 December 2023

Aniket Halder, Arabdha Bhattacharya, Nirmalendu Biswas, Nirmal K. Manna and Dipak Kumar Mandal

The purpose of this study is to carry out a comprehensive analysis of magneto-hydrodynamics (MHD), nanofluidic flow dynamics and heat transfer as well as thermodynamic…

Abstract

Purpose

The purpose of this study is to carry out a comprehensive analysis of magneto-hydrodynamics (MHD), nanofluidic flow dynamics and heat transfer as well as thermodynamic irreversibility, within a novel butterfly-shaped cavity. Gaining a thorough understanding of these phenomena will help to facilitate the design and optimization of thermal systems with complex geometries under magnetic fields in diverse applications.

Design/methodology/approach

To achieve the objective, the finite element method is used to solve the governing equations of the problem. The effects of various controlling parameters such as butterfly-shaped triangle vertex angle (T), Rayleigh number (Ra), Hartmann number (Ha) and magnetic field inclination angle (γ ) on the hydrothermal performance are analyzed meticulously. By investigating the effects of these parameters, the authors contribute to the existing knowledge by shedding light on their influence on heat and fluid transport within butterfly-shaped cavities.

Findings

The major findings of this study reveal that the geometrical shape significantly alters fluid motion, heat transfer and irreversibility production. Maximum heat transfer, as well as entropy generation, occurs when the Rayleigh number reaches its maximum, the Hartmann number is minimized and the angle of the magnetic field is set to 30° or 150°, while the butterfly wings angle or vertex angle is kept at a maximum of 120°. The intensity of the magnetic field significantly controls the heat flow dynamics, with higher magnetic field strength causing a reduction in the flow strength as well as heat transfer. This configuration optimizes the heat transfer characteristics in the system.

Research limitations/implications

Further research can be expanded on this study by examining thermal performance under different curvature effects, orientations, boundary conditions and additional factors. This can be accomplished through numerical simulations or experimental investigations under various multiphysical scenarios.

Practical implications

The geometric configurations explored in this research have practical applications in various engineering fields, including heat exchangers, crystallization processes, microelectronic devices, energy storage systems, mixing processes, food processing, air-conditioning, filtration and more.

Originality/value

This study brings value by exploring a novel geometric configuration comprising the nanofluidic flow, and MHD effect, providing insights and potential innovations in the field of thermal fluid dynamics. The findings contribute a lot toward maximizing thermal performance in diverse fields of applications. The comparison of different hydrothermal behavior and thermodynamic entropy production under the varying geometric configuration adds novelty to this study.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 6 December 2023

Nirmal K. Manna, Abhinav Saha, Nirmalendu Biswas and Koushik Ghosh

The purpose of this study is to investigate the influence of enclosure shape on magnetohydrodynamic (MHD) nanofluidic flow, heat transfer and irreversibility in square…

Abstract

Purpose

The purpose of this study is to investigate the influence of enclosure shape on magnetohydrodynamic (MHD) nanofluidic flow, heat transfer and irreversibility in square, trapezoidal and triangular thermal systems under fluid volume constraints, with the aim of optimizing thermal behavior in diverse applications.

Design/methodology/approach

The study uses numerical simulations based on a finite element-based technique to analyze the effects of the Rayleigh number (Ra), Hartmann number (Ha), magnetic field orientation (γ) and nanoparticle concentration (ζ) on heat transfer characteristics and thermodynamic entropy production.

Findings

The key findings reveal that the geometrical design significantly influences fluid velocity, heat transfer and irreversibility. Trapezoidal thermal systems outperform square systems, while triangular systems achieve optimal enhancement. Nanoparticle concentration enhances heat transfer and flow strength at higher Rayleigh numbers. The magnetic field intensity has a significant impact on fluid flow and heat transport in natural convection, with higher Hartmann numbers resulting in reduced flow strength and heat transfer. The study also highlights the influence of various parameters on thermodynamic entropy production.

Research limitations/implications

Further research can explore additional geometries, parameters and boundary conditions to expand the understanding of enclosure shape effects on MHD nanofluidic flow and heat transfer. Experimental validation can complement the numerical simulations presented in this study.

Originality/value

This study provides valuable insights into the impact of enclosure shape on heat transfer performance in MHD nanofluid flow systems. The findings contribute to the optimization of thermal behavior in applications such as electronics cooling and energy systems. The comparison of different enclosure shapes and the analysis of thermodynamic entropy production add novelty to the study.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 24 April 2023

Wenchao Duan, Yiqiang Yang, Wenhong Liu, Zhiqiang Zhang and Jianzhong Cui

The purpose of this paper is to reveal the solute segregation behavior in the molten and solidified regions during direct chill (DC) casting of a large-size magnesium alloy slab…

204

Abstract

Purpose

The purpose of this paper is to reveal the solute segregation behavior in the molten and solidified regions during direct chill (DC) casting of a large-size magnesium alloy slab under no magnetic field (NMF), harmonic magnetic field (HMF), pulsed magnetic field (PMF) and two types of out-of-phase pulsed magnetic field (OPMF).

Design/methodology/approach

A 3-D multiphysical coupling mathematical model is used to evaluate the corresponding physical fields. The coupling issue is addressed using the method of separating step and result inheritance.

Findings

The results suggest that the solute deficiency tends to occur in the central part, while the solute-enriched area appears near the fillet in the molten and solidified regions. Applying magnetic field could greatly homogenize the solute field in the two-phase region. The variance of relative segregation level in the solidified cross-section under NMF is 38.1%, while it is 21.9%, 18.6%, 16.4% and 12.4% under OPMF2 (the current phase in the upper coil is ahead of the lower coil), HMF, PMF and OPMF1 (the current phase in the upper coil lags behind the lower coil), respectively, indicating that OPMF1 is more effective to reduce the macrosegregation level.

Originality/value

There are few reports on the solute segregation degree in rectangle slab under magnetic field, especially for magnesium alloy slab. This paper can act a reference to make clear the solute transport behavior and help reduce the macrosegregation level during DC casting.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 3 April 2024

Nirmal K. Manna, Abhinav Saha, Nirmalendu Biswas and Koushik Ghosh

This paper aims to investigate the thermal performance of equivalent square and circular thermal systems and compare the heat transport and irreversibility of magnetohydrodynamic…

Abstract

Purpose

This paper aims to investigate the thermal performance of equivalent square and circular thermal systems and compare the heat transport and irreversibility of magnetohydrodynamic (MHD) nanofluid flow within these systems.

Design/methodology/approach

The research uses a constraint-based approach to analyze the impact of geometric shapes on heat transfer and irreversibility. Two equivalent systems, a square cavity and a circular cavity, are examined, considering identical heating/cooling lengths and fluid flow volume. The analysis includes parameters such as magnetic field strength, nanoparticle concentration and accompanying irreversibility.

Findings

This study reveals that circular geometry outperforms square geometry in terms of heat flow, fluid flow and heat transfer. The equivalent circular thermal system is more efficient, with heat transfer enhancements of approximately 17.7%. The corresponding irreversibility production rate is also higher, which is up to 17.6%. The total irreversibility production increases with Ra and decreases with a rise in Ha. However, the effect of magnetic field orientation (γ) on total EG is minor.

Research limitations/implications

Further research can explore additional geometric shapes, orientations and boundary conditions to expand the understanding of thermal performance in different configurations. Experimental validation can also complement the numerical analysis presented in this study.

Originality/value

This research introduces a constraint-based approach for evaluating heat transport and irreversibility in MHD nanofluid flow within square and circular thermal systems. The comparison of equivalent geometries and the consideration of constraint-based analysis contribute to the originality and value of this work. The findings provide insights for designing optimal thermal systems and advancing MHD nanofluid flow control mechanisms, offering potential for improved efficiency in various applications.

Graphical Abstract

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 6 July 2023

K. Thirumalaisamy and A. Subramanyam Reddy

The analysis of fluid flow and thermal transport performance inside the cavity has found numerous applications in various engineering fields, such as nuclear reactors and solar…

Abstract

Purpose

The analysis of fluid flow and thermal transport performance inside the cavity has found numerous applications in various engineering fields, such as nuclear reactors and solar collectors. Nowadays, researchers are concentrating on improving heat transfer by using ternary nanofluids. With this motivation, the present study analyzes the natural convective flow and heat transfer efficiency of ternary nanofluids in different types of porous square cavities.

Design/methodology/approach

The cavity inclination angle is fixed ω = 0 in case (I) and ω=π4 in case (II). The traditional fluid is water, and Fe3O4+MWCNT+Cu/H2O is treated as a working fluid. Ternary nanofluid's thermophysical properties are considered, according to the Tiwari–Das model. The marker-and-cell numerical scheme is adopted to solve the transformed dimensionless mathematical model with associated initial–boundary conditions.

Findings

The average heat transfer rate is computed for four combinations of ternary nanofluids: Fe3O4(25%)+MWCNT(25%)+Cu(50%),Fe3O4(50%)+MWCNT(25%)+Cu(25%),Fe3O4(33.3%)+MWCNT(33.3%)+Cu(33.3%) and Fe3O4(25%)+MWCNT(50%)+Cu(25%) under the influence of various physical factors such as volume fraction of nanoparticles, inclined magnetic field, cavity inclination angle, porous medium, internal heat generation/absorption and thermal radiation. The transport phenomena within the square cavity are graphically displayed via streamlines, isotherms, local and average Nusselt number profiles with adequate physical interpretations.

Practical implications

The purpose of this study is to determine whether the ternary nanofluids may be used to achieve the high thermal transmission in nuclear power systems, generators and electronic device applications.

Social implications

The current analysis is useful to improve the thermal features of nuclear reactors, solar collectors, energy storage and hybrid fuel cells.

Originality/value

To the best of the authors’ knowledge, no research has been carried out related to the magneto-hydrodynamic natural convective Fe3O4+MWCNT+Cu/H2O ternary nanofluid flow and heat transmission filled in porous square cavities with an inclined cavity angle. The computational outcomes revealed that the average heat transfer depends not only on the nanoparticle’s volume concentration but also on the existence of heat source and sink.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 10
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 19 February 2024

Xiang Shen, Kai Zeng, Liming Yang, Chengyong Zhu and Laurent Dala

This paper aims to study passive control techniques for transonic flow over a backward-facing step (BFS) using square-lobed trailing edges. The study investigates the efficacy of…

Abstract

Purpose

This paper aims to study passive control techniques for transonic flow over a backward-facing step (BFS) using square-lobed trailing edges. The study investigates the efficacy of upward and downward lobe patterns, different lobe widths and deflection angles on flow separation, aiming for a deeper understanding of the flow physics behind the passive flow control system.

Design/methodology/approach

Large Eddy Simulation and Reynolds-averaged Navier–Stokes were used to evaluate the results of the study. The research explores the impact of upward and downward patterns of lobes on flow separation through the effects of different lobe widths and deflection angles. Numerical methods are used to analyse the behaviour of transonic flow over BFS and compared it to existing experimental results.

Findings

The square-lobed trailing edges significantly enhance the reduction of mean reattachment length by up to 80%. At Ma = 0.8, the up-downward configuration demonstrates increased effectiveness in reducing the root mean square of pressure fluctuations at a proximity of 5-step height in the wake region, with a reduction of 50%, while the flat-downward configuration proves to be more efficient in reducing the root mean square of pressure fluctuations at a proximity of 1-step height in the near wake region, achieving a reduction of 71%. Furthermore, the study shows that the up-downward configuration triggers early spanwise velocity fluctuations, whereas the standalone flat-downward configuration displays less intense crosswise velocity fluctuations within the wake region.

Practical implications

The findings demonstrate the effectiveness of square-lobed trailing edges as passive control techniques, showing significant implications for improving efficiency, performance and safety of the design in aerospace and industrial systems.

Originality/value

This paper demonstrates that the square-lobed trailing edges are effective in reducing the mean reattachment length and pressure fluctuations in transonic conditions. The study evaluates the efficacy of different configurations, deflection angles and lobe widths on flow and provides insights into the flow physics of passive flow control systems.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of over 3000