Search results

1 – 10 of over 20000
Article
Publication date: 9 August 2022

Chunyun Zhang, Jie Mei, Yushuai Bai, Miao Cui, Haifeng Peng and X. W. Gao

The purpose of this study is to simultaneously determine the constitutive parameters and boundary conditions by solving inverse mechanical problems of power hardening…

Abstract

Purpose

The purpose of this study is to simultaneously determine the constitutive parameters and boundary conditions by solving inverse mechanical problems of power hardening elastoplastic materials in three-dimensional geometries.

Design/methodology/approach

The power hardening elastoplastic problem is solved by the complex variable finite element method in software ABAQUS, based on a three-dimensional complex stress element using user-defined element subroutine. The complex-variable-differentiation method is introduced and used to accurately calculate the sensitivity coefficients in the multiple parameters identification method, and the Levenberg–Marquardt algorithm is applied to carry out the inversion.

Findings

Numerical results indicate that the complex variable finite element method has good performance for solving elastoplastic problems of three-dimensional geometries. The inversion method is effective and accurate for simultaneously identifying multi-parameters of power hardening elastoplastic problems in three-dimensional geometries, which could be employed for solving inverse elastoplastic problems in engineering applications.

Originality/value

The constitutive parameters and boundary conditions are simultaneously identified for power hardening elastoplastic problems in three-dimensional geometries, which is much challenging in practical applications. The numerical results show that the inversion method has high accuracy, good stability, and fast convergence speed.

Article
Publication date: 4 December 2023

Feifei Zhong, Guoping Liu, Zhenyu Lu, Lingyan Hu, Yangyang Han, Yusong Xiao and Xinrui Zhang

Robotic arms’ interactions with the external environment are growing more intricate, demanding higher control precision. This study aims to enhance control precision by…

Abstract

Purpose

Robotic arms’ interactions with the external environment are growing more intricate, demanding higher control precision. This study aims to enhance control precision by establishing a dynamic model through the identification of the dynamic parameters of a self-designed robotic arm.

Design/methodology/approach

This study proposes an improved particle swarm optimization (IPSO) method for parameter identification, which comprehensively improves particle initialization diversity, dynamic adjustment of inertia weight, dynamic adjustment of local and global learning factors and global search capabilities. To reduce the number of particles and improve identification accuracy, a step-by-step dynamic parameter identification method was also proposed. Simultaneously, to fully unleash the dynamic characteristics of a robotic arm, and satisfy boundary conditions, a combination of high-order differentiable natural exponential functions and traditional Fourier series is used to develop an excitation trajectory. Finally, an arbitrary verification trajectory was planned using the IPSO to verify the accuracy of the dynamical parameter identification.

Findings

Experiments conducted on a self-designed robotic arm validate the proposed parameter identification method. By comparing it with IPSO1, IPSO2, IPSOd and least-square algorithms using the criteria of torque error and root mean square for each joint, the superiority of the IPSO algorithm in parameter identification becomes evident. In this case, the dynamic parameter results of each link are significantly improved.

Originality/value

A new parameter identification model was proposed and validated. Based on the experimental results, the stability of the identification results was improved, providing more accurate parameter identification for further applications.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 18 April 2017

Xuehai Wang and Feng Ding

The purpose of this paper is to study the parameter estimation problem of nonlinear multivariable output error moving average systems.

Abstract

Purpose

The purpose of this paper is to study the parameter estimation problem of nonlinear multivariable output error moving average systems.

Design/methodology/approach

A partially coupled extended stochastic gradient algorithm is presented for nonlinear multivariable systems by using the decomposition technique.

Findings

The proposed algorithm can realize the coupled computation of the parameter estimates between subsystems.

Originality/value

This paper develops a coupled parameter estimation algorithm for nonlinear multivariable systems and directly estimates the system parameters without over-parameterization.

Details

Engineering Computations, vol. 34 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 25 March 2022

Jingmei Zhai, Xianwen Zeng and Ziqing Su

To ensure accurate position and force control of massage robot working on human body with unknown skin characteristics, this study aims to propose a novel intelligent impedance…

273

Abstract

Purpose

To ensure accurate position and force control of massage robot working on human body with unknown skin characteristics, this study aims to propose a novel intelligent impedance control system.

Design/methodology/approach

First, a skin dynamic model (SDM) is introduced to describe force-deformation on the human body as feed-forward for force control. Then a particle swarm optimization (PSO) method combined with graph-based knowledge transfer learning (GKT) is studied, which will effectively identify personalized skin parameters. Finally, a self-tuning impedance control strategy is designed to accommodate uncertainty of skin dynamics, system delay and signal noise exist in practical applications.

Findings

Compared with traditional least square method, genetic algorithm and other kinds of PSO methods, combination of PSO and GKT is validated using experimental data to improve the accuracy and convergence of identification results. The force control is effective, although there are contour errors, control delay and noise problems when the robot does massage on human body.

Originality/value

Integrating GKT into PSO identification algorithm, and designing an adaptive impedance control algorithm. As a result, the robot can understand textural and biological attributes of its surroundings and adapt its planning activities to carry out a stable and accurate force tracking control during dynamic contacts between a robot and a human.

Details

Industrial Robot: the international journal of robotics research and application, vol. 49 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 28 April 2014

Maxime Bérot, Julien Malrieu and François Bay

Large structures (e.g. plane, bridge, etc.) often include several hundreds of assembly points. Structural computations often use over-simplistic approximations for these points;…

Abstract

Purpose

Large structures (e.g. plane, bridge, etc.) often include several hundreds of assembly points. Structural computations often use over-simplistic approximations for these points; among others, they do not take into account the thermo-mechanical history due to the assembling process. Running computations with each assembly point modelled completely would require too much time to achieve a simulation. There is thus a need to create equivalent elements for assembly points in order to: take into account the mechanical state of the assembly point in the design stage – while reducing the computational time cost at the same time. This paper aims to discuss these issues.

Design/methodology/approach

This paper introduces an innovative strategy based on a coupling procedure between a finite element tool for modelling the assembly process in order to access to the mechanical state of the assembly point and an optimisation algorithm, in order to identify the equivalent element parameters.

Findings

The strategy has proven to be successful. A connector model easier to use and much faster than the complete model, has been obtained. Results obtained with this element are in good agreement with experimental tests in the case of multipoint assemblies and with the simulation results of the complete numerical model. Finally the connector model appears to be easier to use and much faster than the complete model, more difficult to model properly.

Originality/value

The main innovative aspects of this strategy lie in the fact that the creation of this equivalent element is based on a complete numerical approach. The thermo-mechanical history due to the assembly process is considered – the element parameters are identified thanks to an evolution strategy based on the coupling between a finite element model and a zero-order minimisation algorithm.

Details

Engineering Computations, vol. 31 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 3 August 2015

Jun Zhang, Mengfei Ran, Guodong Han and Guiping Yao

The purpose of this paper is to utilize the proposed function transformation to make the original data series meet the properties of smooth ratio being lessen and stepwise ratio…

Abstract

Purpose

The purpose of this paper is to utilize the proposed function transformation to make the original data series meet the properties of smooth ratio being lessen and stepwise ratio deviation being reduced, so that to improve the accuracy of grey forecasting model.

Design/methodology/approach

According to the characteristics of anti-cotangent functional graph variation, the theory of functional transformation and grey system modeling, the authors proposed a grey model based on the transformation of Aarc cot x+B function.

Findings

The calculated result of practical example shows that the proposed method is both valid on improving fitting effectiveness and forecasting accuracy.

Practical implications

The proposed method in this paper can effectively improve the accuracy of forecasting of high-growth original data series (derivative of data series is not only greater than 1 but also increasing).

Originality/value

The paper succeeds in providing an effective function transformation to make the smooth ratio and stepwise ratio deviation reduced significantly.

Details

Grey Systems: Theory and Application, vol. 5 no. 2
Type: Research Article
ISSN: 2043-9377

Keywords

Article
Publication date: 19 July 2019

Yamna Ghoul

This study/paper aims to present a separable identification algorithm for a multiple input single output (MISO) continuous time (CT) hybrid “Box–Jenkins”.

Abstract

Purpose

This study/paper aims to present a separable identification algorithm for a multiple input single output (MISO) continuous time (CT) hybrid “Box–Jenkins”.

Design/methodology/approach

This paper proposes an optimal method for the identification of MISO CT hybrid “Box–Jenkins” systems with unknown time delays by using the two-stage recursive least-square (TS-RLS) identification algorithm.

Findings

The effectiveness of the proposed scheme is shown with application to a simulation example.

Originality/value

A two-stage recursive least-square identification method is developed for multiple input single output continuous time hybrid “Box–Jenkins” system with multiple unknown time delays from sampled data. The proposed technique allows the division of the global CT hybrid “Box–Jenkins” system into two fictitious subsystems: the first one contains the parameters of the system model, including the multiple unknown time delays, and the second contains the parameters of the noise model. Then the TS-RLS identification algorithm can be applied easily to estimate all the parameters of the studied system.

Details

Engineering Computations, vol. 36 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 26 January 2023

Moritz Benninger, Marcus Liebschner and Christian Kreischer

Monitoring and diagnosis of fault cases for squirrel cage induction motors can be implemented using the multiple coupled circuit model. However, the identification of the…

Abstract

Purpose

Monitoring and diagnosis of fault cases for squirrel cage induction motors can be implemented using the multiple coupled circuit model. However, the identification of the associated model parameters for a specific machine is problematic. Up to now, the main options are measurement and test procedures or the use of finite element method analyses. However, these approaches are very costly and not suitable for use in an industrial application. The purpose of this paper is a practical parameter identification based on optimization methods and a comparison of different algorithms for this task.

Design/methodology/approach

Population-based metaheuristics are used to determine the parameters for the multiple coupled circuit model. For this purpose, a search space for the required parameters is defined without an elaborate analytical approach. Subsequently, a genetic algorithm, the differential evolution algorithm and particle swarm optimization are tested and compared. The algorithms use the weighted mean squared error (MSE) between the real measured data of stator currents as well as speed and the simulation results of the model as a fitness function.

Findings

The results of the parameter identification show that the applied methodology generally works and all three optimization algorithms fulfill the task. The differential evolution algorithm performs best, with a weighted MSE of 2.62, the lowest error after 1,000 simulations. In addition, this algorithm achieves the lowest overall error of all algorithms after only 740 simulations. The determined parameters do not completely match the parameters of the real machine, but still result in a very good reproduction of the dynamic behavior of the induction motor with squirrel cage.

Originality/value

The value of the presented method lies in the application of condition-based maintenance of electric drives in the industry, which is performed based on the multiple coupled circuit model. With a parameterized model, various healthy as well as faulty states can be calculated and thus, in the future, monitoring and diagnosis of faults of the respective motor can be performed. Essential for this, however, are the parameters adapted to the respective machine. With the described method, an automated parameter identification can be realized without great effort as a basis for an intelligent and condition-oriented maintenance.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 18 April 2023

R. Anish and K. Shankar

The purpose of this paper is to apply the novel instantaneous power flow balance (IPFB)-based identification strategy to a specific practical situation like nonlinear lap joints…

Abstract

Purpose

The purpose of this paper is to apply the novel instantaneous power flow balance (IPFB)-based identification strategy to a specific practical situation like nonlinear lap joints having single and double bolts. The paper also investigates the identification performance of the proposed power flow method over conventional acceleration-matching (AM) methods and other methods in the literature for nonlinear identification.

Design/methodology/approach

A parametric model of the joint assembly formulated using generic beam element is used for numerically simulating the experimental response under sinusoidal excitations. The proposed method uses the concept of substructure IPFB criteria, whereby the algebraic sum of power flow components within a substructure is equal to zero, for the formulation of an objective function. The joint parameter identification problem was treated as an inverse formulation by minimizing the objective function using the Particle Swarm Optimization (PSO) algorithm, with the unknown parameters as the optimization variables.

Findings

The errors associated with identified numerical results through the instantaneous power flow approach have been compared with the conventional AM method using the same model and are found to be more accurate. The outcome of the proposed method is also compared with other nonlinear time-domain structural identification (SI) methods from the literature to show the acceptability of the results.

Originality/value

In this paper, the concept of IPFB-based identification method was extended to a more specific practical application of nonlinear joints which is not reported in the literature. Identification studies were carried out for both single-bolted and double-bolted lap joints with noise-free and noise-contamination cases. In the current study, only the zone of interest (substructure) needs to be modelled, thus reducing computational complexity, and only interface sensors are required in this method. If the force application point is outside the substructure, there is no need to measure the forcing response also.

Content available
Book part
Publication date: 16 September 2022

Pedro Brinca, Nikolay Iskrev and Francesca Loria

Since its introduction by Chari, Kehoe, and McGrattan (2007), Business Cycle Accounting (BCA) exercises have become widespread. Much attention has been devoted to the results of

Abstract

Since its introduction by Chari, Kehoe, and McGrattan (2007), Business Cycle Accounting (BCA) exercises have become widespread. Much attention has been devoted to the results of such exercises and to methodological departures from the baseline methodology. Little attention has been paid to identification issues within these classes of models. In this chapter, the authors investigate whether such issues are of concern in the original methodology and in an extension proposed by Šustek (2011) called Monetary Business Cycle Accounting. The authors resort to two types of identification tests in population. One concerns strict identification as theorized by Komunjer and Ng (2011) while the other deals both with strict and weak identification as in Iskrev (2010). Most importantly, the authors explore the extent to which these weak identification problems affect the main economic takeaways and find that the identification deficiencies are not relevant for the standard BCA model. Finally, the authors compute some statistics of interest to practitioners of the BCA methodology.

Details

Essays in Honour of Fabio Canova
Type: Book
ISBN: 978-1-80382-636-3

Keywords

1 – 10 of over 20000